МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
ТЕРНОПІЛЬСЬКИЙ ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ
імені Івана Пулюя
КУРСОВА РОБОТА
з об’єктно - орієнтованого програмування на тему:
“Тригонометричні ефемериди планет
Сонячної системи”
Зміст
стор.
Вступ. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _5
1.Теоретична частина._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6
Возможно вы искали - Реферат: Управление общежитием
2.Розробка алгоритму і структури програми._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 16
3.Програма на мові програмування Delphi._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 19
4.Тестування програми і результати її виконання. _ _ _ _ _ _ _ _ _ _ _ _ _ _ 45
5.Висновки. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 46
6.Список літератури. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 47
Вступ
Похожий материал - Реферат: Упражнения по базам данных MS ACCESS методичка
З давніх часів люди захоплено дивилися в нічне зоряне небо. Ще нічого не знаючи про будову Всесвіту , вони з ночі в ніч вели спостереження за зорями і Місяцем. Особливо їх зацікавив небесний рух 5 яскравих зірок, які на відміну від інших міняли своє положення і отримали за це назву – планети (aster planetes – (лат.) блукаюча зоря).
Спостерігачі древніх цивілізацій намагалися розгадати закони руху цих
зірок по небу. Древній грек Птоломей описав їх рух, виходячи із своєї гео-
центричної системи світу. Корінний перелом у вивченні небесної механіки
наступив в середньовіччі, коли Копернік поставив у центр світу Сонце, Кеп-
лер на основі спостережень сформулював закони руху планет по своїх орбі-
тах, а Ньютон вивів закон всесвітнього тяжіння. З тих пір астрономи почали
детально порівнювати результати спостережень із результатами обчислень.
Розвиток оптичних приладів і математичного апарату обчислень дав поштовх
до того, що результати набули високої точності. Ті незначні невідповідності
в обчисленнях заставили астрономів задуматись над їх причинами, що дало
змогу відкрити нерівномірності в русі планет, так наприклад зміщення пери-
гелію Меркурія було пояснено лише з приходом теорії відносності.
Людина завжди прагнула побачити своє майбутнє, астрономам вдалося зазирнути у майбутнє планет. Знаючи їх початкове положення і те, як вони ру-
хаються, вчені можуть прогнозувати їх місцезнаходження на століття вперед. Однак вирішення цієї задачі складне, оскільки потрібно враховувати дуже ба-
гато чинників : вплив Сонця , вплив планет одна на одну, зміна елементів їх орбіт з плином часу. До появи ЕОМ ці завдання вирішувались на папері мак-
симум з логарифмічною лінійкою , що займало місяці тяжкої праці. Навіть незначна помилка, особливо на початку роботи, зводила всю її нанівець. Тепер
же, астрономи, за допомогою потужних ЕОМ можуть за лічені секунди обраху-
вати траєкторії руху планет, комет, астероїдів.
1. Теоретична частина
Планети Сонячної системи – це небесні тіла, які рухаються в полі тяжіння Сонця по еліптичних орбітах і світяться відбитим сонячним промінням. Основна відмінність планет від зірок у тому, що температури всередині планет недостатні для перебігу там термоядерних реакцій, що в свою чергу зумовлене їх малою масою.Крім великих планет до складу Сонячної системи входять малі планети – астероїди. Великі планети за їх фізичними характеристиками поділяють на дві групи: планети земної групи – Меркурій, Венера, Земля, Марс, та планети-гіганти – Юпітер, Сатурн, Уран, Нептун. Плутон швидше належить до малих планет. Ос-
новна відмінність між цими групами в тому, що до складу планет першої групи
входять в основному важкі хімічні елементи тоді як планети-гіганти складаються
переважно з водню і гелію.
Отже уявімо, що проста людина, озброївшись підзорною трубою чи навіть біноклем, захоче подивитися на ці планети. Перше питання, яке в неї виникне – це куда, в яку точку неба направити свій погляд, адже без спеціальних знань зоряних атласів виокремити планети на фоні тисячі зірок неможливо. Для любителів астрономії і професіоналів астрономів важливо буде знати точні координати планети, відстань до неї, кутовий діаметр, фазу диска, видиму зоряну величину – тобто знати астрономічні ефемериди планети .
Очень интересно - Реферат: Устройство дистанционного управления
В даній курсовій роботі складена програма на мові Delphi, яка використовуючи закони тригонометрії приблизно обчислює ефемериди планет і дозволяє наочно зобразити планети на фоні зоряного неба. Слово “приблизно” означає, що існує деяка похибка, пов’язана з слабким математичним апаратом обчислення, і ця похибка для професіоналів була б просто катастрофічною. Адже сучасні теорії руху планет з використанням диференціального і інтегрального обчислення, а також сучасні обчислювальні машини дозволяють нівелювати похибку обчислення до похибки роздільної здатності сучасних телескопів. Але хочу звернути увагу, що кінцевими користувачами програми можуть бути прості люди і любителі астрономії, для яких ця похибка не дуже важлива.
Отже, що таке ефемериди? Ефемериди – це астрономічні дані про положення на небі та умови спостереження світил для окремих або послідовних моментів часу. Ефемериди публікують у спеціальних виданнях. Астрономічні ефемериди містять головним чином дані про координати, відстані, фази планет.
Архімед сказав : “Дайте мені точку опори і я переверну Землю”. Для астрономії точкою опори, здатною перевернути усю Сонячну систему, є час, а точніше початкова точка відліку часу.
У програмі точкою відліку часу є 9 січня 1990р. Чим особлива ця дата? А ні чим, просто у автора програми під рукою був лише “Астрономічний календар на
1990р. “ і він з нього дізнався про точні координати планет Сонячної системи саме на цю дату. Другою проблемою, яку слід вирішити – є система відліку часу.
Те, що творилося з нашим календарем в історії для астрономів інакше як жахом
не назвеш. То спочатку був Юліанський календар потім Григоріанський, під час
переходу було втрачено 13 днів, як наслідок ми св’яткуємо старий Новий рік. Ви-
сокосні роки, 29 лютого, декретний час – все це призводить до плутанини.
В астрономії прийнято нумерувати дні. Нумеровані дні в астрономії мають назву юліанські дні. Якщо дні нумеровані, то спрощуються всі календарні розрахунки. Наприклад, число днів між двома датами рівне різниці відповідних номерів дат. Це визначення і покладено в основу системи відліку часу в нашій програмі. Єдина проблема – це розробити метод нумерації днів в рамках нашого Григоріанського календаря.
Вам будет интересно - Реферат: Распределения студентов по базам практики
Нумерація днів в сучасному календарі затруднена через його неперіодичність : одні місяці мають 30 днів, інші 31, в лютому то 28, то 29 в високосному році. Як-
би в кожному місяці було 30 днів, а високосних років не було, то номер дати
можна було б визначити по формулі:
N=365 * G + 30 * (M-1) + D
де – G, M, D – рік, місяць, день дати.
Найбільші складності в удосконалені цієї формули створює лютий. Для високосних років, починаючи з 1 березня , потрібно враховувати додатковий день. Якби лютий був останнім місяцем року, то по крайній мірі, ця складність зникла б. Тому в календарних розрахунках місяць і рік доцільно перенумерувати: березень буде першим місяцем року і т.д., а січень і лютий одинадцятим і дванадцятим місяцями попереднього року.
Алгоритм присвоєння номера дня в рамках Григоріанського календаря буде
таким:
S:= int ( 12 – M /10 );
M:= 12 * S + M – 2 ;
G:= G – S ;
N:= 365 * G + int (G/4) – int (G/100) + int (G/400) + int (30.59 * M ) + D – 30 ;
спростимо : об’єднаємо перші два члена до int ( 365.25 * G ).
Для дат з 1900 по 2099 роки вираз N спрощується за рахунок того, що сума тре-
тього і четвертого членів за цей час не міняється і дорівнює –15. Так як в нуме-
рації дат числа –15 і –30 тільки посувають номера всіх дат на одне і теж число,
то в розрахунках їх можна не враховувати. Щоб номера дат для CC і CCI ст. не
були занадто великими з номера року віднімемо 1900, тоді:
N:= int ( 365.25 * ( G – 1900 ) + int ( 30.59* M ) + D ; (1)
Оскільки за цією формулою 9 січня 1990 р. Має значення N:=32852, то ми вводи-
мо його як константу точки відліку часу.
Тепер розберемося з простором. Просторове положення планети відносно Сонця задається елементами орбіти. Елементи орбіти – величини, які характеризують розміщення орбіти небесного тіла в просторі, її розміри, форму, а також положення тіла на орбіті. За початок відліку координат беруть точку весняного рівнодення - точку небесного екватора, через яку центр диска Сонця 20(21) березня переходить з Південної півкулі неба в Північну.
Якщо дивитися з полюса орбіти, з якого рух тіла відбувається проти руху стрілки годинника, то точку перетину площини орбіти з площиною екліптики ( площина орбіти Землі ), в якій орбіта піднімається над площиною екліптики – називають висхідним вузлом. Дугу від точки весняного рівнодення по великому колі екліптики до вузла – називають довготою висхідного вузла (W, Aie ).
Дугу від точки весняного рівнодення до точки перигелію планети ( найменша
відстань до Сонця ) – називають довготою перигелію Aap.
Розміри і форму орбіти визначають за рівнянням орбіти в полярних координатах
Похожий материал - Реферат: Программа фильтрации шумов
де:
r – відстань від точки на орбіті, де знаходиться планета до Сонця в а.о. ) AR ,
e – ексцентриситет орбіти ( геометрична властивість еліпса орбіти) Aeo ,
a – велика піввісь орбіти (середня відстань від планети до Сонця в а.о. ) Aao ,
v – кут справжньої аномалії ( кут у площині орбіти від перигелію до точки на
орбіті, де перебуває планета),
оскільки v = b - Aap де:
b - геліоцентрична довгота планети ( кут між точкою весняного рівнодення і точкою на орбіті де перебуває планета ) AG,
отже:
або ( 2 )
Це головна формула, яка визначає рух планети по еліптичній орбіті. Невідоми-
ми величинами тут є AG і AR: геліоцентрична довгота і радіус-вектор – основ-
ні ефемериди планети з яких в подальшому будуть визначатися інші.
Отже перед початком роботи програми нам відомі елементи орбіти, що є конс-
тантами, номер дати спостереження , початкові координати планети: геліоцентри-
чна довгота і радіус-вектор в початковий момент часу 9 січня 1990р. Використає-
мо 2 закон Кеплера для опису руху планети. Він говорить, що площа секторів
еліпса орбіти за одинаків проміжок часу однакова. Оскільки швидкість руху планети по орбіті незмінна, то дуги цих секторів будуть також однакові .
S1 = S2 ; R1 = R2