Выполнил: студент 3 курса, Гордеев Сергей Николаевич
Научный руководитель: Сухомлин Владимир Трофимович
Оценка:
Иркутск
2004
Оглавление ????? I. ???????? ????????????????????????.4 ????? 1. ????????? ??????? ???????????? ? ??????????. ???????????? ? ?????????????? ?????????????????????..4 ????? 2. ???? ?݅??????????????????????.6????? II. ?????????????? ?????????? ????????? ? ??????????7 ????? 1. ????? ???????? ? ?????????? ??????????????????..7 ????? 2. ????????? ???????????? ?????????? ????????? ???????????..11????? III. ?????????????? ?????????? ????????? ? ?????????????????.16 ????? 1. ?????????????????? ???????????????????????.16 ????? 2. ????????????????? ???????????????????????...21 ????? 3. ??????????? ???????? ????????????????? ??????????ⅅ?..24????? IV. ?????????? ?????????????? ?????????? ?????????(?????????)27????? V. ????? ???????? ? ??????????? ???????? ????????? ?????????腅??????????????????????????..31????? VI. ?????????充????????????????????..35 I . Введение ????? ???????????? ???? ??? ?????????? ?????? ?????? ????????? ?????-?? ?????????? ???????, ??????? ??????? ???????????? ?????????? ??? ????????????? ???????. ?? ???? ???????? ????????????? ???????????? ???????? ?????????? ????????? ????? ??????? ??????? ?? ???? ?????. ???????? ? ???? ??????? ????? ????????? ???????????. ????? ? ???? ? ?????, ???????????? ?????? ? ?????? ?????????????? - ??? ??? ??????? ?????? ???????.Глава 1. Природные ресурсы используемые в энергетике. Традиционная и альтернативная энергетика. ??????????, ? ?????????? ???????, ??????????????? ??????? ?????? ??? ???????????? ?????????? ?? ???? ????? ???. ???????????? ??????? ???????????? ?? ????????? ? ??????? ??? ????????????? ????, ? ???? ????????? ? ?????? ?????????????? ?? ?????? ???? ? ??????.??????????? ????? ????? ????????? ??? ??????? ???????????? ???????, ??????????? ? ????????: 1) ?? ???? ????????? ??????????? ?????? ?????? ? ???????? ?????????? ???????; ?????????? ? ?????????? ????? ??????? ????????? ???? ?? ???????? ?? ??????????, ? ???????, ????????? ???????????? ?? ??????? ? ??????????????? ?????? (?. ?. ???? ? ???????????? ???????????); 2) ?? ???? ?????????? ? ????????? ????? ????? ????????? ??????? ???? ??? ??????? ???????? ???????? (??????? ???????) ??? ?????????? ???????? ?????? ???? ??? ??????? ???????? ??????? (???????????? ???????); 3) ?? ???? ??????? ??????????? ???????? ? ???? ??? ???????? ??????????? ???????? ? ????????????? ???????; ??? ??????? ?? ??????????? ??????? ???????? ????? ??????? ???????????????.?????? ??? ???????, ??? ????????, ???????? ??????? ??????????? ??????????, ?????????? ?? ???????????? ??????? ????????? ? ?????????? ? ?????? ??????? ????? ????????????. ?????? ?????????? ?????????? ??????? ?? ????? (??? ???????????? ? ??????????????? ???????) ???????? ? ??????? 1. [????????]??????? 1?????? ????????? ?????????? ??????? ?? ?????Вид энергии | Запасы, кВт•ч |
Невозобновляемые источники энергии: Ядерная энергия (деления)Химическая энергия горючих веществВнутреннее тепло Земли | 547 000 •1012 55000•1012 134•1012 |
Ежегодно возобновляемые источники энергии :Энергия солнечных лучейЭнергия морских приливов Энергия ветра Энергия рек | 580000•1012 70000•1012 1700•1012 18•1012 |
Местоположение | Широта, град | Инсоляция, кВт• ч/м2 | ||
Наибольшее значение в день | Наименьшее значение в день | Годовое значение | ||
ЭкваторТропикиСредние широтыЦентральная АнглияПолярный круг | 023.5455266.5 | 6.57.17.27.06.5 | 5.83.41.20.50 | 22001900150014001200 |
Применение солнечного излучения в виде тепла | Преобразование солнечного излучения в электрическую и механическую энергию |
Гелиоустановки (солнечные коллекторы): Нагрев воды с целью теплоснабжения и горячего водоснабжения жильяОпреснение водыРазличные сушилки и выпариватели | Термоэлектрические генераторы: Термоэлектронная эмиссияТермоэлементы (термопары)Фотоэлектрические генераторы: Фотоэлектронная эмиссия Полупроводниковые элементыФотохимия и фотобиология: Фотолиз (фотодиссоциация)Фотосинтез |
Общеизвестно, что на солнце предметы нагреваются. Солнечную энергию можно использовать либо непосредственно — для обогрева домов или приготовления пищи, либо косвенно — для генерирования электричества. На солнце предметы нагреваются в результате поглощения ими энергии солнечного излучения. Для объяснения этого явления в свое время предлагалось множество механизмов, но только появившаяся в этом столетии квантовая теория оказалась в состоянии справиться с подобной проблемой.
Во многих устройствах для теплового преобразования используются так называемые коллекторы - приемники солнечного излучения (рис. 1 ). Получая энергию от солнца, такое устройство вновь излучает ее, не обмениваясь излучением с окружающей средой.
Возможно вы искали - Реферат: Генератор электроэнергии на броуновском движении
Рис. 1. Плоские солнечные коллекторы.
Обозначим интенсивность солнечного излучения через Р , а поглощательную способность пластины для этого вида радиации через αс . Под действием солнечного излучения пластина нагревается до тех пор, пока не достигнет равновесной температуры Т . При такой температуре интенсивность падающего и испускаемого излучения равны, что позволяет записать равенство
αс Р = εσТ4 , (1)
где ε — излучательная способность пластины при низких температурах.
Тогда равновесную температуру Т мы получим из уравнения
(2)
Похожий материал - Реферат: Геометрическая оптика
Очевидно, равновесная температура тем выше, чем больше отношение αс /ε . А согласно табл. 3 [Бринкворт], это отношение иногда, в частности для полированных металлов, достигает значений 2-3, но чаще оно много меньше. Однако полированные металлы вследствие их низкой поглощательной способности непригодны для изготовления коллекторов солнечного излучения. Для подобных целей обычно выбирают материалы с высокой поглощательной способностью, для которых отношение αс /ε близко к 1. Такие материалы называются нейтральными поглотителями . Полагая Р = 800 Вт/м2 (типичная интенсивность солнечного излучения в тропиках в летнее время), из уравнения (2) мы находим значение равновесной температуры, равное 343 К (70° С). Эта величина действительно близка к реальной температуре черной пластины, установленной на длительное время под тропическим солнцем.
Таблица 3
Радиационные характеристики веществ
Вещество | Температура тела или источника излучения | ||||
20-100° С | 5000° С | ||||
ρ | α | ε | ρ | α | |
Полированные металлы Оксидированные металлы Белое глянцевое покрытие Черное матовое покрытие Алюминиевое покрытие Бетон Черепичная крыша Стекло | 0.9 0.2 0.1 0.05 0.5 0.1 0.1 0.1 | 0.1 0.8 0.9 0.95 0.5 0.9 0.9 0.9 | 0.1 0.8 0.9 0.95 0.5 0.9 0.9 0.9 | 0.7 0.8 0.8 0.1 0.8 0.4 0.2 0.1 | 0.3 0.2 0.2 0.9 0.2 0.6 0.8 0.0 |
Важным фактором, влияющим на собирание солнечной энергии, является длинноволновое излучение, приходящее из атмосферы. Оно испускается главным образом молекулами углекислого газа и водяного пара при поглощении ими прямого солнечного излучения, а также излучения, отраженного от земли и обусловленного конвекцией. Спектры поглощения этих молекул, связанные с их колебательными и вращательными движениями, лежат в видимой и инфракрасной областях. Общая интенсивность Ра этого излучения существенно зависит от содержания в атмосфере водяного пара, особенно вблизи земной поверхности. При повышенной влажности и сплошной облачности атмосфера ведет себя примерно так же, как черное тело с температурой около 280 К (10° С); соответствующая интенсивность излучения на горизонтальной поверхности составляет около 300 Вт/м2 . Общая же интенсивность атмосферного излучения редко падает ниже 100 Вт/м2 . Для собирания этого излучения применяют так называемые селективные поглотители . Обычно такой поглотитель представляет собой полированную металлическую поверхность, покрытую тонкой темного цвета защитной пленкой окисей никеля или меди. Его поглощательная способность в коротковолновой области довольно высока, порядка 0,9. При очень тонком покрытии подобный поглотитель прозрачен для излучения с длиной волны, превышающей его толщину. Тогда его излучательная способность в длинноволновой части спектра должна быть не выше, чем у металла, то есть около 0,1. Равновесная температура такого селективного поглотителя с величиной отношения αс /ε , близкой к 9, в рассмотренных ранее условиях должна повыситься до 427 К, или 1540 С (если интенсивность длинноволнового атмосферного излучения составляет 200 Вт/м2 , а поглощательная способность к этому виду излучения равна 0,1). Однако добиться такого существенного улучшения практически очень сложно. Основная трудность заключается в том, что большинство селективных покрытий очень чувствительно к пылевому загрязнению, и в естественных условиях их характеристики со временем быстро ухудшаются.
Дальнейшего повышения равновесной температуры поглотителя можно добиться, если с помощью зеркал сконцентрировать на нем энергию солнечного излучения. На рис. 2 схематически показано одно из таких простейших устройств с плоскими зеркалами. Очевидно, что при использовании полностью отражающей зеркальной системы интенсивность облучения поглотителя увеличивается пропорционально отношению общей облучаемой поверхности зеркал к поверхности поглотителя. Этот показатель называется коэффициентом концентрации К. Зеркала монтируют таким образом, чтобы все падающие лучи были направлены на поверхность поглотителя. Если поглотитель квадратной формы снабжен, как показано на рис. 2 , четырьмя зеркалами того же размера (что облегчает компоновку и сборку устройства), установленными под углом β = 60°, то в этом случае коэффициент концентрации равен 3. На практике реализовать все достоинства подобной конструкции оказывается невозможным, поскольку отражающая способность зеркал меньше 100%, а при малых углах падения поглощательная способность поглотителя снижается. Тем не менее, величина К, как правило, бывает не ниже 2. В данных условиях равновесная температура плоского солнечного коллектора с зеркальными отражателями рассмотренного типа достигает 180° С (для нейтрального поглотителя) и 332° С (для селективного
Рис. 2. Концентрация солнечного
Очень интересно - Реферат: Гидрогазодинамика
излучения с помощью плоских зеркал.
Рис.3. Концентрация солнечного
излучения с помощью параболического зеркала.
поглотителя). Следует заметить, что в данном случае с помощью рефлекторов усиливается лишь прямая составляющая солнечной радиации, так как сконцентрировать рассеянную составляющую оказывается невозможным.
Наиболее совершенной конструкцией обладает параболический концентратор, который фокусирует солнечные лучи так, как это показано на рис. 3 . В результате коэффициент концентрации значительно увеличивается. На первый взгляд кажется, что в фокусе такого концентратора можно получить совершенно невероятную равновесную температуру, однако на практике этому препятствует непараллельность солнечных лучей. Если для плоского зеркального отражателя подобное обстоятельство не имеет существенного значения, то в случае параболического концентратора оно ограничивает величину коэффициента концентрации. Вследствие непараллельности лучей их энергия собирается не точно в фокусе (точке), а в некоторой области вокруг него. На рис. 3 показаны траектории лучей, исходящих от противоположных краев солнечного диска и попадающих в точки А и Б. Поэтому для получения максимального количества энергии облучаемое тело должно быть достаточно большим, чтобы принять все лучи, отраженные от концентратора. Кроме того, с ухудшением оптических свойств зеркальной поверхности концентратора и с увеличением размеров приемника солнечной энергии уменьшается эффективное значение К, а, следовательно, и равновесная температура,
При среднем качестве зеркал и использовании приемников, достаточно полно воспринимающих отраженное излучение, К обычно не превышает 10000. Равновесная температура составляет для такого коллектора около 1930К (1660° С).
Вам будет интересно - Реферат: Гидродинамика
Кроме обычных плоских коллекторов и коллекторов с концентраторами существуют и другие конструкции солнечных коллекторов, например солнечный бассейн. В таком устройстве поглотителем служит непосредственно водный бассейн, который при необходимости можно оборудовать любым покрытием. Под воздействием солнечной радиации температура воды повышается как за счет непосредственного поглощения водой фотонов энергии, так и за счет теплообмена между поглощающим излучение днищем бассейна и водой. При нагревании вода расширяется и нагретые более легкие слои поднимаются вверх. Было обнаружено, что в некоторых природных водоемах самые нагретые слои воды оказываются скорее на дне, чем на поверхности. Как предполагают, это явление обусловлено высоким содержанием соли в таких водоемах и температура изменяется с глубиной бассейна так же, как и концентрация соли, которая у поверхности воды оказывается ниже, чем у дна. Результаты экспериментов показали, что равновесная температура в подобных бассейнах может достигать 100° С.
Процесс поглощения солнечной радиации осуществляется здесь отчасти в толще воды, а отчасти у дна бассейна. Он сопровождается сложным перераспределением энергии между различными слоями жидкости за счет теплопроводности и излучения. Вследствие этого характеристики излучения бассейна определяются его поглощающими свойствами. Для простоты можно считать, что такой бассейн подобен плоскому коллектору, поглотитель которого по своим свойствам занимает некоторое промежуточное положение между рассмотренными ранее нейтральным и селективным поглотителями.
Солнечные бассейны имеют ряд преимуществ перед коллекторами других типов. Это наиболее дешевые приемники больших количеств солнечной энергии; благодаря высокой теплоемкости воды они обладают широкими возможностями сохранения внутренней энергии, и, несмотря на различные технические трудности, солнечные бассейны находят все большее применение.
В этой главе было рассказано о поглощении солнечной радиации молекулами материальных тел, связанном с ним процессе изменения температуры изолированного тела, а также способах повышения равновесной температуры изолированного тела. В следующей главе будет рассказано о том, как реализуются на практике все эти явления и процессы.
Глава 2. Некоторые практические применения солнечных коллекторов
Отопление и горячее водоснабжение
Использование солнечной энергии для отопления и горячего водоснабжения школ, фабрик, больниц, жилых домов и т.д. является одним из наиболее привлекательных способов ее применения. Системы горячего водоснабжения на основе плоского солнечного коллектора уже сейчас получили широкое распространение в Израиле и Японии, а на юге США и даже в Европе действуют довольно большие экспериментальные установки для отопления домов и нагрева воды в плавательных бассейнах. Рис. 4 поможет понять принцип действия солнечного водонагревателя. Находясь в контакте с поглотителем коллектора, вода нагревается и при помощи насоса или естественной циркуляции отводится от него. Затем жидкость поступает в хранилище, откуда ее потребляют по мере надобности, или в теплообменник, через который энергия передается теплоносителю.
Похожий материал - Реферат: Гипотезы о природе шаровой молнии
Рис. 4. Простой солнечный водонагреватель с естественной циркуляцией.
В устройстве, изображенном на рис. 4 , основным теплообменником является поглотитель. Жидкость здесь либо непосредственно омывает тыльную часть - пластины поглотителя, либо проходит через систему труб, являющихся по существу частью этой пластины. В воздухонагревательных коллекторах пластины поглотителей имеют множество отверстий, при прохождении через которые воздух нагревается. В условиях хорошего теплообмена между окружающей средой и пластинами (это характерно для нагревания жидкости) температуры поглотителя и жидкости одинаковы. Поскольку жидкость нагревается при прохождении через коллектор, очевидно, что на входе жидкости поглотитель холоднее, нежели на выходе. Перепад температуры зависит как от удельной теплоемкости жидкости, так и ее скорости.
Полезная мощность такого нагревателя зависит от мощности поступающего на него солнечного излучения, поэтому необходимо, прежде всего, выбрать наилучшую ориентацию коллектора. В принципе любой коллектор с помощью специального механизма можно было бы все время ориентировать на солнце, но это довольно дорогой способ. Поэтому в настоящее время используются неподвижные коллекторы, у которых меняется только угол наклона. Оптимальный угол наклона для наибольшего выхода энергии зависит от широты, например для средних широт составляет ≈50-650 .
Практически все солнечные коллекторы указанной конструкции имеют близкие показатели, важные для оценки их теплотехнического совершенства.