Реферат: Полимеры

Реферат

ПОЛИМЕРЫ

Выполнил:

Проверил:

Тышкевич Е.Е., 97-А-18 "А"

Возможно вы искали - Реферат: Полимерные материалы, пластмассы

Плаксин Е.Б.

Кострома – 2000

Содержание

Общая характеристика и классификация ……………………………………………………... 3
Свойства полимеров ……………………………………………………………………………. 5
· Механические свойства ……………………………………………………………. 5
· Теплофизические свойства ………………………………………………………… 6
· Химические свойства ………………………………………………………………. 6
· Электрические свойства …………………………………………………………… 7
· Технологические свойства ………………………………………………………… 8
Пластмассы ……………………………………………………………………………………... 9
· Полистирол …………………………………………………………………………. 10
· Полиэтилен …………………………………………………………………………. 10
· Фторопласт …………………………………………………………………………. 11
· Полиимид …………………………………………………………………………… 12
· Эпоксидные смолы ………………………………………………………….……… 12
Слоистые пластики ………………………………………………………………………...…… 14
· Печатные платы на термопластах …………………………………………..…….. 16
Синтетические эмали, лаки и компаунды ……………………………………………………. 16
· Лаки …………………………………………………………………………..….….. 16
· Эмали …………………………………………………………………………..……. 19
· Компаунды ………………………………………………………………………….. 17
Полимерные клеи и агдезивы ……………………………………………………………..…… 19
Список литературы ………………………………………………………………………….…. 21

ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ

Полимером называется органическое вещество, длинные молеку­лы которого построены из одинаковых многократно повторяю­щихся звеньев — мономеров.

Размер молекулы полимера определяется степенью полимери­зации n, т.е. числом звеньев в цепи. Если n=10...20, вещества представляют собой легкие масла. С возрастанием п увеличива­ется вязкость, вещество становится воскообразным, наконец, при n=1000 образуется твердый полимер. Степень полимеризации неограниченна: она может быть 104 , и тогда длина молекул достига­ет микрометров. Молекулярная масса полимера равна произве­дению молекулярной массы мономера и степени полимеризации. Обычно она находится в пределах 103 ... 3*105 . Столь большая длина молекул препятствует их правильной упаковке, и структура полимеров варьирует от аморф­ной до частично кристаллической. Доля кристалличности в зна­чительной мере определяется геометрией цепей. Чем ближе укла­дываются цепи, тем более кристалличным полимер становится. Конечно, кристалличность даже в лучшем случае оказывается несовершенной.

Похожий материал - Реферат: Полимеры: общий обзор класса

Аморфные полимеры плавятся в диапазоне температур, зави­сящем не только от их природы, но и от длины цепей; кристалли­ческие имеют точку плавления.

По происхождению полимеры делятся на три группы.

Природные образуются в результате жизнедеятельности рас­тений и животных и содержатся в древесине, шерсти, коже. Это протеин, целлюлоза, крахмал, шеллак, лигнин, латекс.

Обычно природные полимеры подвергаются операциям выде­ления очистки, модификации, при которых структура основных цепей остается неизменной. Продуктом такой переработки явля­ются искусственные полимеры. Примерами являются натураль­ный каучук, изготовляемый из латекса, целлулоид, представляю­щий собой нитроцеллюлозу, пластифицированную камфорой для повышения эластичности.

Природные и искусственные полимеры сыграли большую роль в современной технике, а в некоторых областях остаются неза­менимыми и до сих пор, например в целлюлозно-бумажной про­мышленности. Однако резкий рост производства и потребления органических материалов произошел за счет синтетических поли­меров — материалов, полученных синтезом из низкомолекуляр­ных веществ и не имеющих аналогов в природе. Развитие хими­ческой технологии высокомолекулярных веществ—неотъемлемая и существенная часть современнойНТР. Без полимеров уже не может обойтись ни одна отрасль техники, тем более новой. По химической структуре полимеры делятся на линейные, разветв­ленные, сетчатые и пространственные. Молекулы линейных поли­меров химически инертны по отношению друг к другу и связаны между собой лишь силами Ван-дер-Ваальса. При нагревании вязкость таких полимеров уменьшается и они способны обратимо переходить сначала в высокоэластическое, а затем и в вязкотекучее состояния (рис. 1). Поскольку единственным следствием нагрева является изменение пластичности, линейные полимеры называют термопластичными. Не следует думать, что термин «ли­нейные» обозначает прямолинейные, наоборот, для них более ха­рактерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Очень интересно - Реферат: Полиметилметакрилат. Органическое стекло

Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под дей­ствием реагентов.

Разветвленные (привитые) полимеры более прочны, чем ли­нейные. Контролируемое разветвление цепей служит одним из основных промышленных методов модификации свойств термопластичных полимеров.

Сетчатая структура характерна тем, что цепи связаны друг с другом, а это сильно ограничивает движение и приводит к изме­нению как механических, так и химических свойств. Обычная ре­зина мягка, но при вулканизации серой образуются ковалентные связи типа S-0, и прочность растет. Полимер может приобрести сетчатую структуру и спонтанно, например, под действием света и кислорода произойдет старение с потерей эластичности и рабо­тоспособности. Наконец, если молекулы полимера содержат реакционноспособные группы, то при нагревании они соединяются множеством поперечных прочных связей, полимер оказывается сшитым, т. е. приобретает пространственную структуру. Таким образом, нагрев вызывает реакции, резко и необратимо изменяю­щие свойства материала, который приобретает прочность и вы­сокую вязкость, становится нерастворимым и неплавким. Вслед­ствие большой реакционной способности молекул, проявляющей­ся при повышении температуры, такие полимеры называют тер­мореактивными. Нетрудно представить, что их молекулы активны не только по отношению друг к другу, но и к поверхностям ино­родных тел. Поэтому термореактивные полимеры, в отличие от термопластичных, обладают высокой адгезионной способностью даже при низких температурах, что позволяет использовать их в качестве защитных покрытий, клеев и связующего в композици­онных материалах.

Рис.1. Схематическая диаграмма вязкости термопластичных полимеров в зависимости от температуры: Т1 – температура перехода из стеклообразного в высоко эластичное состояние, Т2 – температура перехода из высокоэластичного в вязкотекучее состояние.
Рис.2 Реакции образования полимеров: а) – полимеризация, б) - поликонденсация

Термопластичные полимеры получают по реакции полимери­зации, протекающей по схеме пМ-->Мп (рис.2), где М — мо­лекула мономера, Мп — макромолекула, состоящая из мономер­ных звеньев, п— степень полимеризации.

При цепной полимеризации молекулярная масса нарастает почти мгновенно, промежуточные продукты неустойчивы, реакция чувствительна к присутствию примесей и требует, как правило, высоких давлений. Неудивительно, что такой процесс в естествен­ных условиях невозможен, и все природные полимеры образова­лись иным путем. Современная химия создала новый инстру­мент — реакцию полимеризации, а благодаря ему большой класс термопластичных полимеров. Реакция полимеризации реализует­ся лишь в сложной аппаратуре специализированных производств, и термопластичные полимеры потребитель получает в готовом виде.

Вам будет интересно - Реферат: Полиуретановые материалы

Реакционноспособные молекулы термореактивных полимеров могут образоваться более простым и естественным путем— посте­пенно от мономера к димеру, потом к тримеру, тетрамеру и т. д. Такое объединение мономеров, их «конденсацию», называют ре­акцией поликонденсации; она не требует ни высокой чистоты, ни давлений, но сопровождается изменением химического состава, а часто и выделением побочных продуктов (обычно водяного пара) (рис. 2). Именно эта реакция реализуется в природе; она мо­жет быть легко осуществлена за счет лишь небольшого нагрева в самых простых условиях, вплоть до домашних. Такая высокая технологичность термореактивных полимеров предоставляет ши­рокие возможности изготовлять различные изделия на нехимиче­ских предприятиях, в том числе на радиозаводах.

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.

СВОЙСТВА ПОЛИМЕРОВ

Механические свойства. Одна из основных особенностей полиме­ров состоит в том, что отдельные отрезки цепей (сегменты) могут перемещаться путем поворота вокруг связи и изменения угла (рис.3). Такое смещение, в отличие от растяжения связей при упругой деформации истинно твердых тел, не требует большой энергии и происходит при невысокой температуре. Эти виды внутреннего движения — смена конформаций, несвойственные другим твердым телам, придают полимерам сходство с жидкостя­ми. В то же время большая длина искривленных и спиралеоб­разных молекул, их ветвление и взаимная сшивка затрудняют смещение, вследствие чего полимер приобретает свойства твер­дого тела.

Для некоторых полимеров в виде концентрированных раство­ров и расплавов характерно образование под действием поля (гравитационного, электростатического, магнитного) кристалличе­ской структуры с параллельной упорядоченностью макромолекул в пределах небольшого объема—домена. Эти полимеры — так называемые жидкие кристаллы— находят широкое применение при изготовлении светоиндикаторов.

Похожий материал - Реферат: Получение алканов, алкенов, алкинов. Важнейшие представители. Применение в промышленности

Полимерам наряду с обычной упругой деформацией свойст­вен ее оригинальный вид — высокоэластическая деформация, ко­торая становится преобладающей при повышении температуры. Переходиз высокоэластического состояния в стеклообразное, ха­рактеризующееся лишь упругой деформацией, называется стекло­ванием. Ниже температуры стеклования Тст состояние полимера твердое, стекловидное, высокоупругое, выше—эластическое. Если температура стеклования выше температуры эксплуатации, то по­лимер используется в стеклообразном состоянии, если Тст<Тэкс— в высокоэластическом. Температура стеклования разных полиме­ров находится в пределах 130...300 К. Для детальной характе­ристики полимеров в специальных условиях в справочной лите­ратуре приводятся также значения температур перехода в хруп­кое состояние и холодостойкость.

Рис.3. Вращение групп молекулы полимера – смена конформаций в молекуле этанаС2 Н6 . Рис.4. Характер изменения удлинения во времени при постоянной нагрузке: а – модель Максвелла, б - модель Войта-Кельвина.

Для прочных (конструкционных) полимеров кривая растяже­ния подобна аналогичной кривой для металлов (рис.4). По зна­чению модуля упругости Е конструкционные полимеры делятся на четыре группы: жесткие E>104 МПа, полужесткие E=(5...10). 103 МПа, мягкие E=(1...5)*103 МПа. Наиболее эла­стичные полимеры—эластомеры (каучуки) имеют модуль упру­гости E=10МПа. Как видно, даже высокомодульные полимеры уступают по жесткости металлам в десятки и сотни раз- Этот не­достаток удается в значительной мере преодолеть введением в полимер волокнистых и листовых наполнителей.

Особенность полимеров состоит также в том, что их прочност­ные свойства зависят от времени, т. е. предельная деформация устанавливается не сразу после приложения нагрузки. Такая за­медленная реакция их на механические напряжения объясняется инерционностью процесса смены конформаций, что можно пред­ставить с помощью модели (рис.4). Для полимеров, находя­щихся в высокоэластическом состоянии, закон Гука в простей­шей форме неприменим, т. е. напряжение непропорционально де­формации. Поэтому обычные методы испытаний механических свойств применительно к полимерам могут давать неоднозначные результаты. По той же причине инженерных расчетных способов конструирования деталей из полимеров пока еще не существует и преобладает эмпирический подход.

Теплофизические свойства. Коэффициент теплопроводности по­лимеров значительно ниже, чем других твердых тел,—около 0,2 ... 0,3 В/(м*К), поэтому они являются теплоизоляторами. Вследствие относительной подвижности связей и смены конфор­маций полимеры имеют высокий ТКЛР (10-4 ... 10-5 К-1 ). Мож­но было бы поэтому полагать, что они плохо совместимы с ма­териалами, имеющими меньший ТКЛР,—металлами и полупровод­никами. Однако высокая эластичность полимеров и сравнительно