Реферат: Супрамолекулярная химия

Оглавление

Cупрамолекулярная химия. Предыстория 3
Исследования, заложившие основы супрамолекулярной химии 5
История изучения некоторых типичных объектов супрамолекулярной химии 8
Cовременное состояние и тенденции развития супрамолекулярной химии 10

Проанализировано развитие области науки, называемой супрамолекулярной химией. Даны основные определения и понятия этой дисциплины. В историческом контексте рассмотрены исследования, заложившие основы супрамолекулярной химии. Приведены примеры некоторых ее типичных объектов – клатратов и циклодекстринов. Отмечается, что последние достижения в супрамолекулярной химии и наиболее перспективные области ее использования связаны с процессами самосборки и самоорганизации, которые, в частности, могут быть реализованы в супрамолекулярном синтезе и создании молекулярных и супрамолекулярных устройств .

Cупрамолекулярная химия. Предыстория

Супрамолекулярная химия – одна из самых молодых и в то же время бурно развивающихся областей химии. За 25 – 30 лет своего существования она уже успела пройти ряд важных этапов, но в то же время основные идеи и понятия этой дисциплины еще не являются общеизвестными и общепринятыми. В предлагаемом обзоре мы стремились проследить развитие области науки, называемой супрамолекулярной химией, выявить наиболее удачные определения ее основных задач и важнейших понятий, а также обрисовать современное состояние и перспективы.

Термин «супрамолекулярная химия» и основные понятия этой дисциплины были введены французским ученым Ж.-М. Леном в 1978 г. [1, 2] в рамках развития и обобщения более ранних работ [3] (в частности, в 1973 г. в его трудах появился термин «супермолекула»). Супрамолекулярная химия определялась словами: «Подобно тому как существует область молекулярной химии, основанной на ковалентных связях, существует и область супрамолекулярной химии, химии молекулярных ансамблей и межмолекулярных связей». Впоследствии это первое определение много раз переформулировалось. Пример другого определения, данного Леном: «супрамолекулярная химия – это «химия за пределами молекулы», изучающая структуру и функции ассоциаций двух или более химических частиц, удерживаемых вместе межмолекулярнымисилами» [4].

Возможно вы искали - Реферат: Сущность окислительно-восстановительных реакций

Во многих случаях компоненты, образующие супрамолекулярные системы, можно называть (по аналогии с системами, рассматриваемыми в молекулярной биологии) молекулярными рецептором и субстратом, причем последний является меньшим по размеру компонентом, связывания которого и необходимо добиться [2].

Для того чтобы адекватно описать химический объект, необходимо указать его элементы и типы связей между ними, а также пространственные (геометрические, топологические) характеристики. Объекты супрамолекулярной химии, супермолекулы, обладают такой же определенностью, как и составляющие их отдельные молекулы. Можно сказать, что «супермолекулы представляют собой по отношению к молекулам то же, что молекулы – по отношению к атомам, причем роль ковалентных связей в супермолекулах играют межмолекулярные взаимодействия» [5].

Согласно Лену, супрамолекулярную химию можно разбить на две широкие, частично налагающиеся друг на друга области [4]:

– химию супермолекул – четко обозначенных олигомолекулярных частиц, возникающих в результате межмолекулярной ассоциации нескольких компонентов – рецептора и его субстрата (субстратов) и строящихся по принципу молекулярного распознавания;

– химию молекулярных ансамблей – полимолекулярных систем, которые образуются в результате спонтанной ассоциации неопределенного числа компонентов с переходом в специфическую фазу, имеющую более или менее четко обозначенную микроскопическую организацию и зависимые от ее природы характеристики (например, клатраты, мембраны, везикулы, мицеллы).

Похожий материал - Реферат: Таблица по разделу Органическая химия

Супрамолекулярные образования могут быть охарактеризованы пространственным расположением компонентов, их архитектурой, «супраструктурой», а также типами межмолекулярных взаимодействий, удерживающих компоненты вместе. Супрамолекулярные ансамбли обладают вполне определенными структурными, конформационными, термодинамическими, кинетическими и динамическими свойствами, в них могут быть выделены различные типы взаимодействий, различающиеся своей силой, направленностью, зависимостью от расстояний и углов: координационные взаимодействия с ионами металлов, электростатические силы, водородные связи, ван-дер-ваальсовы взаимодействия, донорно-акцепторные взаимодействия и т. д. Сила взаимодействий может варьировать в широком диапазоне, от слабых или умеренных, как при образовании водородных связей, до сильных и очень сильных, как при образовании координационных связей с металлом. Однако в целом межмолекулярные взаимодействия слабее, чем ковалентные связи, так что супрамолекулярные ассоциаты менее стабильны термодинамически, более лабильны кинетически и более гибки динамически, чем молекулы [6].

Таким образом, супрамолекулярная химия охватывает и позволяет рассмотреть с единых позиций все виды молекулярных ассоциатов, от наименьшего возможного (димер) до наиболее крупных (организованных фаз) [6]. При этом необходимо еще раз подчеркнуть, что объекты супрамолекулярной химии обязательно содержат части (подсистемы), не связанные ковалентно.

Переход от молекулярной к супрамолекулярной химии Лен предложил иллюстрировать схемой, представленной на рис. 1 [2].

Основные функции супермолекул: молекулярное распознавание, превращение (катализ) и перенос [7]. Функциональные супермолекулы наряду с организованными полимолекулярными ансамблями и фазами могут быть использованы для создания молекулярных и супрамолекулярных устройств [4].

Кроме Лена следует также назвать Ч. Дж. Педерсена и Д. Дж. Крама, работы и исследования которых сыграли важную роль в становлении супрамолекулярной химии. В 1987 г. эти трое ученых были удостоены Нобелевской премии по химии (за определяющий вклад в развитие химии макрогетероциклических соединений, способных избирательно образовывать молекулярные комплексы типа «хозяин-гость») [1].

Очень интересно - Реферат: Таблица по химии

Исследования, заложившие основы супрамолекулярной химии

Истоки основных понятий супрамолекулярной химии можно найти в работах, выполненных еще в прошлом и самом начале нынешнего века. Так, П. Эрлих в 1906 г. [8] фактически ввел понятия рецептора и субстрата, подчеркивая, что молекулы не реагируют друг с другом, если предварительно не вступают в определенную связь. Однако связывание должно быть не любым, а селективным. Это подчеркивал Э. Фишер еще в 1894 г. [9], сформулировав свой принцип «ключ – замок» – принцип, предполагающий, что в основе молекулярного распознавания лежит стерическое соответствие, геометрическая комплементарность рецептора и субстрата. Наконец, селективное связывание требует взаимодействия, сродства между партнерами, и корни этой идеи можно искать в трудах А. Вернера [10], что делает супрамолекулярную химию в этом отношении обобщением и развитием координационной химии.

Как считает Ж.-М. Лен, эти три понятия – фиксация (связывание), распознавание и координация – заложили фундамент супрамолекулярной химии [6].

Некоторые другие понятия супрамолекулярной химии также давно известны. Даже термин « Übermolecule», т.е. супер-, или сверхмолекула, был введен уже в середине 30-х гг. нашего столетия [11] для описания более высокого уровня организации, возникающего из-за ассоциации координационно насыщенных молекул (например, при образовании димера уксусной кислоты). Была хорошо известна важнейшая роль супрамолекулярной организации в биологии [6].

Однако возникновение и развитие супрамолекулярной химии как самостоятельной области в системе химических наук произошло значительно позднее. Вот что пишет по этому поводу Ж.-М. Лен в своей книге [6]: «…для возникновения и бурного развития новой научной дисциплины требуется сочетание трех условий. Во-первых, необходимо признание новой парадигмы, показывающей значение разрозненных и на первый взгляд не связанных наблюдений, данных, результатов и объединяющей их в единое когерентное целое. Во-вторых, нужны инструменты для изучения объектов данной области, и здесь для супрамолекулярной химии решающую роль сыграло развитие современных физических методов исследования структуры и свойств (ИК-, УФ- и особенно ЯМР-спектроскопия, масс-спектрометрия, рентгеновская дифракция и др.), позволяющих изучать даже сравнительно лабильные супрамолекулярные ансамбли, характеризуемые низкоэнергетическими нековалентными взаимодействиями. В-третьих, необходима готовность научного сообщества воспринять новую парадигму так, чтобы новая дисциплина могла найти отклик не только среди занимающихся непосредственно ею специалистов, но и в близких (и не очень близких) областях науки. Так произошло и с супрамолекулярной химией, насколько можно судить по стремительным темпам ее развития и проникновения в другие дисциплины за последние 25 лет».

Вам будет интересно - Реферат: Татарстан - республика химии

По мнению Лена, «…супрамолекулярная химия в том виде, в каком мы знаем ее сегодня, началась с изучения селективного связывания катионов щелочных металлов природными и синтетическими макроциклическими и макрополициклическими лигандами, краун-эфирами и криптандами» [12].

Среди подобного рода природных соединений прежде всего следует указать на антибиотик валиномицин. Расшифровка его структуры в 1963 г., в которую большой вклад внесли советские ученые во главе с Ю. А. Овчинниковым [13], вышла далеко за рамки обычного открытия. Этот циклический депсипептид (он построен из остатков амино- и оксикислот, соединенных между собой амидными и сложноэфирными связями) оказался первым среди мембрано-активных комплексонов, или ионофоров. Такие названия отражают способность этих веществ давать комплексные соединения со щелочными катионами в растворах и переносить связанный катион через биологические мембраны. С открытием ионофоров стала реальной возможность целенаправленного регулирования ионных потоков в живых системах. За работы в области мембрано-активных комплексонов Овчинникову с сотрудниками в 1978 г. была присуждена Ленинская премия [14].

Следующий важный этап в становлении супрамолекулярной химии связан с открытием Ч. Педерсеном в 1962 г. краун-эфиров [15]. Пытаясь синтезировать ингибиторы, стабилизирующие нефтяные масла от автоокисления, Педерсен получил побочный продукт, который сейчас называется дибензо-18-краун-6. Впоследствии Педерсен синтезировал и изучил примерно 60 макроциклических полиэфиров с числом кислородных атомов от 4 до 20 и размером цикла от 12- до 60-членного. Он обнаружил, что краун-эфиры образуют с катионами щелочных и щелочноземельных металлов прочные комплексы, которые можно выделить в кристаллическом виде [16].

В 1966 г. Ж.-М. Лен заинтересовался процессами, происходящими в нервной системе, и задался вопросом: может ли химия внести вклад в изучение этих высших биологических функций [4]? Электрические процессы в нервных клетках основаны на изменениях в распределении ионов калия и натрия в клеточных мембранах. В опубликованных в то время научных работах было показано, что валиномицин может посредничать при переносе иона калия в митохондрии. Это навело Лена на мысль, что подходящие искусственно созданные циклопептиды или их аналоги могут явиться средством изучения распределения катионов в мембране и их переноса через мембрану. Такие свойства проявляли также и другие нейтральные антибиотики энниатиновой и актиновой групп, что объяснялось избирательным образованием комплексов с катионами щелочных металлов [13]. Однако возникла необходимость синтеза молекул химически менее активных, чем циклические пептиды. Важную роль для осуществления такого синтеза сыграло открытие Ч. Педерсена. Краун-эфиры стали рассматриваться как вещества, в которых сочетаются комплексообразующая способность макроциклических антибиотиков и устойчивые функции эфира.

В то же время стало ясно, что соединения, имеющие трехмерную сфероидальную полость, которая целиком охватывает связанный ион, должны образовывать более прочные комплексы, чем макроциклы с плоской формой. Работа над этой проблемой началась в октябре 1967 г., а осенью 1968 г. был получен первый трехмерный аминоэфир, названный Леном криптандом [4] (рис. 2, m=n=1). Сразу же была отмечена его способность прочно связывать ионы калия, и полученному комплексу была приписана криптатная (клеточная) структура. Были синтезированы и другие криптаты. Их строение было подтверждено путем определения кристаллической структуры ряда комплексов [4] (рис. 3).

Похожий материал - Реферат: Твердофазный синтез перрената калия (WinWord97/2000)

Д. Крам обратил внимание на существенный недостаток краун-эфиров и криптандов, заключающийся в том, что и те и другие недостаточно хорошо организованы для приема гостевых ионов: их структура как бы сморщена, но выделить в кристаллическом виде [16]. не расправлена [16, 17] (рис. 4, а, б). Поэтому при вхождении катиона внутрь полости необходимы энергетические затраты на ее выравнивание (оптимизацию), и это сказывается на устойчивости комплекса. Д. Крам решил сконструировать так называемые «молекулы-контейнеры» с заранее предорганизованной структурой. В результате сложных многостадийных синтезов в начале 1980-х гг. были получены сферанды и кавитанды [17] (рис. 4 в, г) – своего рода молекулярные чаши, стенки которых выложены ароматическими ядрами, а углубления, куда попадает частица-гость, – кислородными атомами. У этих чаш имеются даже ножки – метильные группы, связанные с фенильными радикалами. В ходе проведенных исследований выяснилось, что полученные соединения образуют значительно более устойчивые комплексы с катионами щелочных металлов, чем краун-эфиры и криптанды. В чашу кавитанда могут попадать и прочно там удерживаться и небольшие нейтральные молекулы, такие, как CH2 Cl2 , CH3 CN, SO2 .

Следует отметить, что более сложным соединениям присущ также и более сложный процесс молекулярного распознавания. Если для простых криптатных комплексов характерно наиболее простое – «сферическое» – распознавание, при котором играет роль лишь размер сферы, аппроксимирующий субстрат, то для сложных соединений молекулярное распознавание может быть «тетраэдрическим» или «линейным» распознаванием, осуществляемым рецепторами разного типа [4]. В последующие годы были изучены все эти многочисленные разновидности процессов молекулярного распознавания, причем участвующие в процессах рецепторы принадлежали к самым разным классам соединений (краун-эфиры, криптанды, сферанды, кавитанды, каликсарены, циклофаны, циклодекстрины, криптофаны и др.). Как пишет Лен, «... область исследований расширялась, что привело к осознанию молекулярного распознавания как новой области химических исследований, которая, поставив в центр внимания межмолекулярные взаимодействия и процессы в общем, распространившись на целый спектр смежных областей, выросла в супрамолекулярную химию» [6, 12].

История изучения некоторых типичных объектов супрамолекулярной химии

В историческом контексте первыми изученными объектами супрамолекулярной химии были соединения включения, названные впоследствии клатратами. Клатраты – соединения, образованные путем включения молекул, называемых гостями, в полости каркаса, состоящего из молекул другого сорта, называемых хозяевами, или в полость одной большой молекулы-хозяина. Часто между гостями и хозяевами нет иных взаимодействий, кроме ван-дер-ваальсовых. Термодинамическая устойчивость таких соединений обеспечивается благоприятной геометрией расположения молекул-гостей в полостях хозяйского каркаса, вследствие чего слабые межмолекулярные взаимодействия приводят к выигрышу энергии по сравнению с энергией составляющих исходных компонентов в свободном состоянии [18]. При этом, как и для обычных химических соединений, соотношения составляющих компонентов могут быть переменными, как в случае клатратов гидрохинона с благородными газами, или строго определенными, как в соединениях мочевины с парафинами и в большинстве клатратных гидратов.