В настоящее время основной долей энергии, используемой человечеством, является химическая энергия реакции горения природного топлива:
топливо + кислород = продукты окисления топлива (1)
Химическая энергия этой реакции затем превращается либо в механическую (двигатели внутреннего сгорания), либо в электрическую (тепловые электростанции) по схеме
Химическая энергия - теплота - механическая энергия - электрическая энергия
В двигателях внутреннего сгорания процесс идет до генерации механической энергии, на тепловых электростанциях – до электрической.
Недостатком существующих методов преобразования энергии является малый КПД. Особенно большие потери энергии происходят на стадии превращения теплоты в механическую работу. В силу специфической особенности теплоты она может лишь частично превращаться в работу, основная часть теплоты бесполезно рассеивается в окружающем пространстве. Поэтому фактический КПД электростанций составляет 30-40%, а транспортных установок в городских условиях 10-15%. Таким образом, 60-90% химической энергии топлива бесполезно рассеивается в окружающее пространство. Поэтому особый интерес представляет прямой путь превращения энергии окисления топлива в электрическую энергию:
Химическая энергия - электрическая энергия.
Это электрохимический путь, осуществляемый с помощью топливных элементов.
Возможно вы искали - Реферат: Углеводы
Топливными элементами называются устройства, в которых химическая энергия окисления топлива превращается непосредственно в электрическую энергию. Для этого реакция (1) в топливном элементе разбивается на стадии:
· анодное окисление топлива
· катодное восстановление окислителя (кислорода)
· движение ионов в растворе электролита
· движение электронов от анода к катоду (электрический ток)
Похожий материал - Реферат: Углеводы
Идея использования химической энергии окисления (сжигания) горючих веществ, в частности природного топлива, для непосредственного получения электроэнергии в гальваническом элементе уже давно привлекает внимание исследователей. В настоящее время к группе топливных элементов относят не только элементы, использующие в качестве активных материалов кислород, уголь или другие горючие материалы, но и все гальванические системы, в которых активные материалы вводятся в элемент извне по мере их расходования.
В настоящее время достигнуты успехи в области исследования и изготовления топливных элементов. Например, топливные элементы были применены на космическом корабле системы Джеминай в США.
Принцип действия топливного элемента (ТЭ)
Рассмотрим работу топливного элемента на примере водородно-кислородного элемента. В этом элементе происходит превращение химической энергии реакции горения водорода (4) в электрическую.
Химическая энергия реакции (4), равная 284 кДж/моль (при = 1 атм. и = 1 атм. и температуре 298К) может быть с невысоким КПД превращена в тепловых машинах через теплоту в электрическую энергию. Другой путь - электрохимический – может быть осуществлен в топливном элементе, схема которого приведена на рисунке:
N электрическая
Очень интересно - Реферат: Углерод
- +
Н2 К+ О2
Н2
О2
Вам будет интересно - Реферат: Углерод (С)
Н2 О ОН-
Н2 H2 O
+
Н2 О Анод Катод
(2) 2Н2 + 4ОН - -4Н2 О+4е О2 + 2Н2 О + 4е -4ОН- (3)
Суммарная реакция
2Н2 + О2 - 2Н2 О + Nэлектр (4)
Рисунок 1. Принцип действия топливного элемента.
Похожий материал - Реферат: Межпредметные связи в курсе школьного предмета химии на предмете углерода и его соединений
Как и гальванический элемент, ТЭ состоит из анода и катода. К аноду подается топливо (восстановитель) в данном случае водород, к катоду – окислитель, обычно чистый кислород или кислород воздуха. Между электродами находится электролит, в качестве которого для рассматриваемого водородно-кислородного элемента используется раствор щелочи.
Схема водородно-кислородного ТЭ может быть записана в виде
(5)
где Ме – проводник первого рода, играющий роль катализатора электродного процесса и токоотвода.
На аноде идет реакция окисления водорода (2), а на катоде протекает восстановление кислорода (3).