Реферат: Поиски альтернативных хладагентов

До начала 1930-ых годов основными хладагентами, применявшимися в холодильных системах, являлись аммиак, диоксид серы, метил хлорид и диоксид углерода. Каждое из указанных рабочих тел обладало весьма существенными технологическими и экологическими недостатками.

Однако в конце 20-ых годов Томас Мидгрей открыл новое фторуглеродное семейство веществ, которое обладало практически оптимальными для хладагентов свойствами. С этим открытием холодильная промышленность получила возможность приступить к массовому выпуску разнообразной холодильной техники. Кроме того, галоидопроизводные углеводороды стали применяться для производства аэрозолей, пенополиуретанов, растворителей и средств пожаротушения.

К началу 70-ых годов мировой рынок хлорфторуглеродов (ХФУ) принял огромные размеры. Поэтому, естественно, возник вопрос о конечной судьбе этих соединений, попадающих в большом количестве в атмосферу. Проводимые в это время исследования показали, что некоторых ХФУ необычайно долговечны в силу своей химической стабильности. Они могут существовать в атмосфере, не разрушаясь в течение длительного времени. Однако под действием излучения происходит их постепенное разложение с выделением атомов хлора, которые вступает во взаимодействие с озоном, уменьшая тем самым его количество в стратосфере.

Как известно, стратосферный озон поглощает большую часть ультрафиолетовой радиации Солнца. Поэтому разрушение озонового слоя увеличивает уровень ультрафиолетовой радиации, попадающей на Землю, что приводит к возрастанию числа раковых заболеваний у людей и животных, гибели растений, сокращению биологических ресурсов океанов. Т.е. уменьшение концентрации озона в стратосфере является глобальной экологической опасностью для существования биологической формы жизни на Земле.

Впервые в международном масштабе проблема регулирования производства и потребления озоноразрушающих ХФУ была поднята Венской Конвенцией по защите озонового слоя в 1985 г. Важным дальнейшим шагом в решении этой проблемы стало подписание Монреальского протокола в 1987 г., согласно которому по уровню влияния на озоновый слой Земли галоидопроизводные углеводороды были разделены на 3 группы:

Возможно вы искали - Реферат: Полиуретановые материалы

1. ХФУ - хлорфторуглероды, которые обладают высоким потенциалом разрушения озонового слоя (Ozon Depleting Potention - ODP). Иногда используется термин «потенциал истощения озона». Хладагенты этой группы R11, R12, R113, R500, R502, R503 имеют ODP>0,05. Озоноразрушающая способность R11 была принята за единицу - OPD=1.

2. ГХФУ - гидрофторхлоруглероды, в молекулах которых содержится водород. Для этих веществ характерно меньшее время существования в атмосфере по сравнению с ХФУ и, как следствие, они оказывают меньшее влияние на разрушение озонового слоя ODP<0,55. Некоторые многокомпонентные рабочие тела, предлагаемые в качестве альтернативы ХФУ, содержат в своем составе ГХФУ, например, R22.

3. ГФУ - гидрофторуглероды. Эти вещества не содержат хлора, а состоят из атомов углерода, водорода и фтора. Они не разрушают озоновый слой (ODP=0) и имеют короткий период жизни в атмосфере. ГФУ считаются долгосрочной альтернативой ХФУ в холодильных системах. Примерами таких хладагентов являются R134a, R125, R152a и др.

Несмотря на принятые мировым сообществом меры, проблема, вызванная эмиссией хладагентов в атмосферу, продолжала обостряться, и в ноябре 1992 г. в Копенгагене на очередной встрече стран-участниц Монреальского протокола была принята более жесткая редакция этого документа. Более того, на совещании подчёркивалось, что альтернативные (с точки зрения влияния на озоновый слой Земли) хладагенты должны обладать незначительным влиянием и на парниковый эффект, а само холодильное оборудование должно быть более эффективным, чем существующее. Тем самым проблема перевода холодильного оборудования на альтернативные хладагенты приобрела принципиально новые оттенки.

Проблема разрушения озонового слоя Земли поставила перед учёными и промышленностью сложную задачу замены озоноактивных холодильных агентов на альтернативные. Проблема замены озоноактивных холодильных агентов на альтернативные оказалась более сложной и многоплановой, чем это могло показаться в 1987г. Она включает в себя:

Похожий материал - Реферат: Фазовые равновесия в системе MgS-Y2S3

- изучение воздействия хладагентов на озоновый слой, влияние хладагента не парниковый эффект;

- исследование токсичности и горючести;

- изучение теплофизических свойств и термодинамической эффективности новых рабочих тел;

- оценку теплообменных характеристик;

- рассмотрение вопросов, связанных с совместимостью хладагентов с конструкционными материалами и растворимостью их в холодильных маслах;

Очень интересно - Реферат: Сталь и чугун

- проектирование нового холодильного оборудования;

- разработку экономически выгодных технологий синтеза озонобезопасных хладагентов и освоение мощностей для их производства.

Среди мер, принимаемых мировым сообществом, направленных на регулирование производства и потребления озоноразрушающих веществ, главным является требование полного отказа к 2000-му году от использования ХФУ во всех видах холодильного оборудования. Необходимость замены этих веществ, нашедших широкое применение в качестве теплоносителей, растворителей, рабочих тел холодильных установок, явилась причиной поиска альтернативных хладагентов, близких к ХФУ по своим физико-химическим свойствам.

Проведение оценки эффективности использования новых рабочих тел в существующем и разрабатываемом холодильном оборудовании, а также освоение новых технологий с использованием озонобезопасных хладагентов возможно на основе информации о термодинамических свойствах этих веществ, наиболее надёжным средством получения которой остаётся эксперимент.

Критерием оптимизации по энергетическим и экономическим факторам может служить TEWI (общий эквивалент теплового воздействия), методика расчёта которого широко используется при определении оптимального состава многокомпонентного рабочего тела.

Вам будет интересно - Реферат: Строение и свойства вещества

В реальной холодильной установке рабочим телом является маслохладоновый раствор, свойства которого значительно отличаются от свойств чистых хладагентов.

В настоящее время предметом пристального внимания являются работы, посвященные изучению свойств масло-аммиачных растворов.

Аммиак практически не растворяется в масле. Поэтому оно загрязняет коммуникационные трубопроводы и соединения, осаждается на поверхности конденсатора и труб охлаждения, уменьшая теплопередачу.

При температурах нагнетания свыше 140° возможно нарушение смазки компрессора в результате образования толстого слоя нагара на клапанах. Смесь из свободного водорода, аммиака и воздуха может вызвать вспышку масла и взрыв.

Известно, что фирмой Sulrer Escher Wyss было синтезировано масло, растворимое в аммиаке. Растворимость масла в аммиаке исключает образование на теплообменных поверхностях плёнки, что повышает коэффициент теплоотдачи до a=9100 Вт/м2 *К (при нерастворимом масле a=2700 Вт/м2 *К).

Похожий материал - Реферат: Супрамолекулярная химия

Наиболее часто в качестве растворимого в аммиаке масла предлагаются синтетические масла типа ПАГ (полиоксиалкиленгликоль) (см. патент США 5037570). ПАГ растворимы в аммиаке при низких температурах, обладают хорошей вязкостно-температурной зависимостью. Однако их характерными недостатками являются сравнительно высокая критическая температура расслоения маслохладонового раствора, а также недостаточная противоизносные свойства и термоокислительная стабильность.

Сотрудниками Одесской Государственной Академии Холода и Института биологической химии и нефтехимии Украины предложено новое синтетическое соединение, которое может быть использовано в качестве растворимого в R717 холодильного масла - ХМРА-1.

Данное масло обладает в 1,85 раза более высокой термоокислительной стабильностью и в 1,9 раза более высокими противоизносными свойствами по сравнению с маслами на основе ПАГ. Кроме того, оно частично растворяется в минеральных нефтяных маслах, что упрощает решение отдельных эксплуатационных проблем. Основные теплофизические свойства масла ХМРА-1 приведены в таблице 1.1.

Таблица 1.1

T, K

P, Па

r, кг/м3

h, Па*с

Ср, кДж/кг*К

250

5,6

1095,2

4305,00

1,712

260

11,9

1087,8

1059,00

1,724

270

24,1

1080,4

343,200

1,772

280

46,4

1073,0

137,700

1,803

290

85,4

1065,6

65,350

1,833

300

150,9

1058,2

35,410

1,863

310

256,9

1050,9

21,320

1,873

320

423,3

1043,5

19,980

1,923

330

676,4

1036,1

9,817

1,954

340

1051,5

1028,7

7,287

1,984

350

1093,9

1021,3

5,666

2,015