Руководитель: доцент, к. х. н. Нестерова Т.Н.
Самара
2006 г.
1. Термодинамический анализ
При анализе процесса алкилирования фенола олефинами необходимо, прежде всего, определить какие вещества будут образовываться. В молекуле фенола существует два реакционных центра: ароматическое кольцо и гидроксильная группа. При взаимодействии алкена с ОН- группой образуются простые эфиры, которые легко могут перегруппировываться в алкилфенолы. Установлено, что алкилфенолы преимущественно образуются путем прямого алкилирования в ядро. Рассмотрим влияние гидроксильной группы в молекуле фенола на ароматическое кольцо. Заместитель характеризуется большим положительным эффектом сопряжения по сравнению с отрицательным индуктивным эффектом. Он сильно активирует орто- и пара- положения, поэтому 3-алкилфенолы будут находиться в продуктах в очень малых количествах. Процесс может пойти и дальше с образованием моно-, ди- и триалкилфенолов. Т.к. нас интересуют моно- замещенные фенолы то необходимо проводить процесс при небольшом избытке фенола.
Процесс идет через образование из алкена промежуточного карбкатиона, который является легко изомеризующейся и активной частицей. Возможно следующее: позиционная и структурная изомеризация, реакция крекинга, взаимодействие с ненасыщенными углеводородами, олигомеризация. Реакция изомеризации как правило опережает все прочие превращения, поэтому при алкилировании - олефинами получаем всевозможные изомеры. В условиях относительно нежестких протекают реакции только позиционной изомеризации.
Учитывая выше сказанное, отберем вещества, которые вероятнее всего будут находиться в равновесной смеси:
(a)- 2-(2-гидроксифенил)тетрадекан; (b)- 3-(2-гидроксифенил)тетрадекан;
Возможно вы искали - Реферат: Алхимия как культурный феномен арабского и европейского средневековья
(c)- 4-(2-гидроксифенил)тетрадекан; (d)- 5-(2-гидроксифенил)тетрадекан;
(i)- 6-(2-гидроксифенил)тетрадекан; (f)- 7-(2-гидроксифенил)тетрадекан;
(g)- 2-(4-гидроксифенил)тетрадекан; (h)- 3-(4-гидроксифенил)тетрадекан;
(m)- 4-(4-гидроксифенил)тетрадекан; (n)- 5-(4-гидроксифенил)тетрадекан;
(o)- 6-(4-гидроксифенил)тетрадекан; (p)- 7-(4-гидроксифенил)тетрадекан.
Похожий материал - Реферат: Альдегиды и кетоны
Выберем (n-1) независимых реакций, где n-количество образовавшихся компонентов:
ab; bc; cd; di; if; ag; gh; hm;
mn; no; op;
Запишем константы скоростей реакции:
Kxa =; Kxb =; Kxc =; Kxd =; Kxi =; Kxg =; Kxh =;
Очень интересно - Контрольная работа: Альдегиды и кетоны: общие сведения и способы получения
Kxm =; Kxn =; Kxo =; Kxp =.
Выразим концентрацию каждого компонента через константы реакций и концентрацию компонента g:
=; =; =; =;
=; =; =; =;
=; =; =
Вам будет интересно - Дипломная работа: Альтернативная водородная энергетика как элемент школьного раздела химии: "Физико-химические свойства водорода"
Для систем подчиняющихся закону Рауля можно записать для :
====
В свою очередь:
= - =
В термодинамическом анализе для расчета констант реакций необходимы точные данные энтальпии, энтропии, а если процесс идет в жидкой фазе, то критические параметры для расчета давления насыщенного пара, желательно, если это будут экспериментальные данные.
Похожий материал - Реферат: Алюминий
Энтальпии и энтропии. Метод Бенсона не даст в нашем случае точные значения. Для примера рассмотрим 2-(4-гидроксифенил)тетрадекан и 3-(4-гидроксифенил)тетрадекан. У этих веществ будут одинаковые вклады: Cb-(O)-1; Cb-(H)-4; Cb-(C)-1; O-(H,Cb)-1; CH-(2C,Cb)-1; CH2 -(2C)-11; CH3 -(C)-2. Поэтому =0 и =0. Исключение составит реакция (a)(g). =-9,9 кДж/моль за счет орто- взаимодействия в молекуле (a); =-Rln2 кДж/(моль·K) за счет вращения ароматического ядра в молекуле (g).
Давления насыщенного пара. Используя метод Лидерсена или Джобака можно рассчитать критические параметры, а потом и . Но вклады для всех веществ одинаковы, поэтому критические параметры равны, следовательно, равны, их можно не учитывать, =. Давление не оказывает влияние на реакцию. Применение разбавителя скажется отрицательно на скорости реакции.
Зависимость константы скорости реакции от температуры.
Kxa | Kxb | Kxc | Kxd | Kxi | Kxg | Kxh | Kxm | Kxn | Kxo | |
298 | 1 | 1 | 1 | 1 | 1 | 27,23829 | 1 | 1 | 1 | 1 |
350 | 1 | 1 | 1 | 1 | 1 | 15,03934 | 1 | 1 | 1 | 1 |
400 | 1 | 1 | 1 | 1 | 1 | 9,827575 | 1 | 1 | 1 | 1 |
450 | 1 | 1 | 1 | 1 | 1 | 7,058733 | 1 | 1 | 1 | 1 |
500 | 1 | 1 | 1 | 1 | 1 | 5,416903 | 1 | 1 | 1 | 1 |
600 | 1 | 1 | 1 | 1 | 1 | 3,641561 | 1 | 1 | 1 | 1 |
700 | 1 | 1 | 1 | 1 | 1 | 2,742201 | 1 | 1 | 1 | 1 |
800 | 1 | 1 | 1 | 1 | 1 | 2,216706 | 1 | 1 | 1 | 1 |
900 | 1 | 1 | 1 | 1 | 1 | 1,878661 | 1 | 1 | 1 | 1 |
1000 | 1 | 1 | 1 | 1 | 1 | 1,645737 | 1 | 1 | 1 | 1 |
Сумма мольных долей всех компонентов равна 0,95, т.к. реакцию проводим в избытке фенола.