Реферат: Введение в теорию атома

()

Уравнение Шрёдингера для атома водорода приведено к компактному операторному виду, и здесь уже возможно его решение по методу Фурье разделения переменных.

Решения содержат радиальный и угловой сомножители:

8.18. Схема разделения переменных та же, что и в уравнении Лапласа (по правилу «оператор аддитивен - решение мультипликативно». Есть сомножитель радиальный, и есть угловой, и частные решения углового уравнения – сферические функции. Разделим переменные:

Возможно вы искали - Реферат: Введение в теорию многоэлектронного атома. Элементы теории многоэлектронных атомов

Получается система (8.29) из двух дифференциальных уравнений: (8.29.1) - уравнение Лежандра для сферических гармоник (с точностью до постоянной совпадающее с уравнением для квадрата модуля момента импульса !), и (8.29.2) - чисто радиальное:

. (8.29)8.19. Итоги.

8.19.1. Гамильтониан для электрона в водородоподобном ионе (атоме):

(8.30)

Похожий материал - Учебное пособие: Векторная модель многоэлектронного атома

8.19.2. Лапласиан в сферических переменных:

+. (8.31)

8.19.3. Уравнение Шрёдингера с потенциальной функцией V(r) для одноэлектронных состояний:

. (8.32)

Потенциальная функция V (r ) имеет вид:

Очень интересно - Реферат: Вероятности, энтропия и энергия. Канонический ансамбль Гиббса

1) у атома H V(r) = -e2 /r,

2) у водородоподобного иона V (r ) =-Ze2 /r.

Уравнение Шрёдингера в общем виде для водородоподобного иона приобретает вид

. (8.33)

Оно разделяется на систему из трёх дифференциальных уравнений:

Вам будет интересно - Научная работа: Взаимодействие нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты с ионами

. (8.34)

От потенциала зависит лишь радиальная, но не угловая часть уравнения Шрёдингера.

Система этих уравнений даёт полное описание атомных орбиталей - одноэлектронных волновых функций в простейшем случае – в водородоподобном ионе. Первое уравнение совпадает с уравнением Шрёдингера для плоского ротатора, оно описывает свойства вращения вокруг аппликаты (мы выполняли преобразования так, что это ось z). Решения этого уравнения нумеруются квантовым числом

. (8.35)

1) Первое уравнение (как и в плоском ротаторе) описывает компоненту момента импульса вдоль оси вращения, определяя проекцию вектора момента с помощью квантового числа m.

Похожий материал - Контрольная работа: Взаимодействие ПАВ с поверхностно-активными полимерами

2) Второе и первое уравнения вместе(до разделения угловых переменных) проистекают из одного общего дифференциального уравнения Лежандра

(8.36)

из которого следует правило квантования модуля момента импульса с помощью числа l :

(8.37)