Реферат: Оптимизационные методы решения экономических задач

Содержание

Введение

1 Оптимизационные методы решения экономических задач.

2 Многокритериальная оптимизация. Методы сведения многокритериальной задачи к однокритериальной

3 Гладкая оптимизация.

Возможно вы искали - Реферат: Оптимизационные модели межотраслевого баланса

4 Выпуклая оптимизация. Условие выпуклости.

5 Экономико-математическая модель реструктуризации угольной промышленности. Критерий оптимизационной задачи

Заключение

Литература


Введение

Похожий материал - Курсовая работа: Оптимизация производственно-отраслевой структуры сельскохозяйственного предприятия

Угольная промышленность является одной из базовых в народно-хозяйственном комплексе Украины. Уголь потребляется почти во всех отраслях народного хозяйства и определяет в основном темпы и возможный уровень развития производства черных и цветных металлов, электрической и тепловой энергии, других отраслей промышленности. Каменный и бурый уголь служат исходным сырьем для ряда отраслей химической промышленности.

Вследствие большой глубины угольных залежей и небольшой мощности пластов угольная промышленность Украины имеет худшие показатели добычи угля по сравнению с некоторыми странами СНГ и мира. Добыча угля в осуществляется в несоизмеримо худших горно-геологических условиях, чем в других странах мира. Это - главная объективная причина больших удельных затрат материальных, энергетических, трудовых ресурсов, а также того, что производительность труда намного ниже мировой. Кроме того, отрасль теряет наиболее подготовленных, квалифицированных специалистов. Большая часть шахт нерентабельна, т.е. суммарные затраты на добычу угля превышают его стоимость на рынке.

В настоящее время отрасль требует внедрения задач оптимизационного типа, в которых требуется найти наилучшее или оптимальное решение при заданных условиях производства. Опыт западноевропейских государств, практически завершивших оптимизационный процесс в угольной промышленности, и России, стартовые позиции которой сходны с Украиной, подтверждает необходимость поддержки и контроля со стороны государства при реализации намеченных программ.

Таким образом, необходимо отметить, что изучение экономических задач оптимизационного типа относящихся к угольной промышленности является актуальным предметом исследования. Наличие большого количества проблем требует детального их изучения и разработки направлений по их решению.

1 Оптимизационные методы решения экономических задач

Очень интересно - Курсовая работа: Оптимизация производственно-отраслевой структуры сельскохозяйственного предприятия

К экономическим задачам оптимизационного типа относятся задачи, в которых требуется найти наилучшее или оптимальное решение при заданных условиях производства. Такие задачи называются задачами на максимум или минимум. Особенностью задач оптимизационного типа является многовариантность их решений, обусловленная следующими причинами: взаимозаменяемостью ресурсов; взаимозаменяемостью готовых видов продукции; существованием альтернативных технологий производства; неодинаковостью технико-экономических показателей даже однотипных хозяйственных субъектов.

Возможны два подхода к постановке оптимизационных задач: при первом подходе требуется получить максимальные конечные результаты при заданных условиях производства; при втором подходе требуется получить заданные конечные результаты при минимальных затратах ресурсов.

Математический инструментарий, позволяющий решать экономические задачи оптимального типа, называется программированием. Различают линейное и нелинейное программирование.

На практике наибольшее распространение получило линейное программирование.

Методы линейного программирования в математике известны под названием общей задачи линейного программирования. Аналитическая формулировка общей задачи линейного программирования. Общая задача линейного программирования формулируется следующим образом:

Вам будет интересно - Курсовая работа: Оптимизация производственной структуры сельскохозяйственного предприятия

Найти решение {Х12 ,….Хn }, позволяющее максимизировать или минимизировать целевую функцию

F = C1 X1 +C2 X2 +…+ Cn Xn

при условиях

Х1 ≥0; Х2 ≥0; …; Хn ≥0.

Похожий материал - Дипломная работа: Оптимизация работы предприятия ООО "Техсервис" по критерию прибыли за счет инноваций технологии и экономии ресурсов

Это развернутая запись общей задачи линейного программирования. Сокращенная запись этой модели имеет вид:

Найти решение {Xj }, позволяющее максимизировать (минимизировать) функцию

при условиях