1. Основні параметри проведення економетричного аналізу
2. Метод найменших квадратів
3. Оцінка параметрів лінійної регресії за методом найменших квадратів
4. Властивості простої лінійної регресії
5. Коефіцієнти кореляції та детермінації
Возможно вы искали - Контрольная работа: Подходы к оценке рисковых инвестиций
6. Ступені вільності, аналіз дисперсій.
7. Перевірка простої регресійної моделі на адекватність.
8. F - критерій Фішера
Задача
Література
Похожий материал - Учебное пособие: Показатели вариации, выборочное наблюдение
1. Основні параметри проведення економетричного аналізу
Багато явищ у природі і суспільстві взаємозалежні. Якщо узимку багато снігу - навесні чекай повеней. Якщо погана екологія - це до хвороб. Якщо перед курортний сезон - росте попит (і ціни) на купальники. Практично будь-яке явище зв'язане з багатьма факторами (причинами), що приведе до складності і неоднозначності аналізу.
Серед різних типів зв'язку нас буде цікавити так називаний статистичний (стохастичний) зв'язок між масовими явищами. Коли досліджується вплив якогось фактора на цікавлячий нас результат, то говорять про причинно-наслідковий зв'язок між фактором Х і результатом Y. Статистика успадковує з цього зв'язку лише термінологію (фактор і результат), суть же статистичного зв'язку принципово відрізняється від причинно-наслідкового.
Розрізняють функціональний (детерминированний) і статистичний зв'язок. Під функціональним зв'язком розуміють залежність у = у(х) при якому кожному значенню аргументу х (фактора) ставиться у відповідність відоме (детерминироване) значення функції (мал. 1, а). Наприклад, закон Ньютона а = F/m (прискорення тіла а прямо пропорціонально силі F і обратнопропорціонально масі m) являє приклад прямої функціональної залежності між а (функцією) і F (аргументом). Зв'язок називають статистичним, якщо для кожного фіксованого значення х€X існує безліч можливих значень показника Y (мал. 1, б). Звичайно Y розглядається як випадкова величина, що має для кожного фіксованого значення х 0 розподіл умовних імовірностей P{Y= yk |х 0 } чи щільність імовірності р(у|х0 ). Якщо при зміні фактора х істотно змінюється і розподіл показника Y, то говорять про наявність істотного статистичного зв'язку між Х і Y. Про такий зв'язок можна в першому наближенні судити вже по зміні середнього значення показника Y - умовного математичного чекання:
який тут записано для безупинної випадкової величини Y. Умовне математичне чекання M[Y | х] має сенс середнього значення показника Y при деякім відомому значенні фактора х. Цю залежність як функцію аргументу х у теорії ймовірностей називають лінією регресії. Вона зображена як приклад на мал. 1,6.
Очень интересно - Лабораторная работа: Показатели качества элементарных звеньев
Рис. 1.
У літературі по эконометрике немає однозначної термінології у відношенні X і Y. Зокрема, зустрічаються такі пари термінів, як регрессор (X) і регрессант (Y), що пояснює X (незалежна, екзогенна) і що пояснюється Y (залежна, ендогенна) перемінні й ін. Ми будемо дотримувати найбільш розповсюджених і лаконічних термінів: Х- фактор, Y- показник.
Відмінність статистичного зв'язку від причинно-наслідкової полягає в наступному. У теорії імовірностей (і математичній статистиці) для випадкових величин X і Y доведено, що якщо Y залежить від X, те і X залежить від Y. Скажемо, пропозиція Y залежить від попиту X, споживання морозива - від сезона. Це причинно-наслідкові залежності. Навряд чи можна погодиться, що сезон залежить від споживання морозива. Це буде правдою лише наполовину (з погляду причинно-наслідкового зв'язку). Тим часом сезон (статистично) залежить від рівня споживання морозива. Інакше кажучи, за результатом ми можемо судити про причину на основі статистичного досвіду. Якщо хладо-комбинат працює на граничних потужностях, напевно в розпалі літо. Якщо случився неврожай, то була посуха. Якщо літак розбився, комісія досліджує найбільш ймовірні причини катастрофи (на основі наблюдання і статистики) і зробить висновок.
У эконометриці (як і у статистикі) приходиться мати справу з вибірками обмеженого обсягу п і замість імовірностей (плотностей імовірності) оперувати їх оцінками -частостями (чи відносними частотами). При цьому на основі вибірки можна побудувати апроксимацію (наближену функцію) лінії регресії. Такі лінії регресії описують функціональну складову математичних моделей статистичної залежності між фактором X і показником Y. Вони використовуються для оцінок і прогнозів в економічних і фінансових розрахунках, при плануванні бізнесу і розподілі інвестиційних потоків.
Вам будет интересно - Дипломная работа: Понятие и классификация систем массового обслуживания
Часткою случаємо статистичного зв'язку є кореляційний зв'язок. Вона оцінюється коефіцієнтом кореляції, що характеризує ступінь лінійного статистичного зв'язку.
При вивченні взаємозв'язків між економічними явищами зважуються наступні задачі:
- вибір типу моделі регресії;
- побудова моделі обраного типу (визначення параметрів моделі);
- прогнозування середнього значення показника для заданого значення фактора;
Похожий материал - Контрольная работа: Постановка и основные свойства транспортной задачи
- оцінка помилок моделювання і прогнозу;
- оцінка впливу факторних ознак на значення показника (імітаційне моделювання);
- дисперсійно-кореляційний аналіз моделі і встановлення істотності (значимості) статистичного зв'язку між фактором і показником;
- оцінка адекватності результатів моделювання явищам, що спостерігаються.