Учебное пособие: Арифметические устройства

К арифметическим устройствам относятся логические схемы, которые способны реализовывать сложение и вычитание. Сумматоры и вычитатели можно получить, соединяя друг с другом обычные логические элементы.

Рассмотрим сложение двух чисел (рис. 15.1)

Рис. 15.1. Правила двоичного сложения

Первые три результата очевидны. Поскольку они соответствуют сложению десятичных чисел. В последнем суммировании (1+1), при сложении десятичных чисел результат будет 2. В двоичной системе 2 записывается как 10. Из рис. 15.1 видно, что происходит перенос 1 в соседний, старший двоичный разряд.

Возможно вы искали - Курсовая работа: Аркадна гра "гольф" з елементами трьохвимірної поверхні

Рассмотрим пример на сложение двоичных чисел (рис 15.2)

Рис. 15.2. Пример двоичного сложения

Рис. 15.3. Правила двоичного сложения

Похожий материал - Курсовая работа: АРМ менеджера по продажам комплектующих

Пример решается просто, пока не доходим до разряда двоек, где нужно найти двоичную сумму 1+1+1. В десятичной системе счисления эта сумма равна 3, что соответствует двоичному числу 11. При этом следует заметить, что сумма 1+1+1 может возникать в любом разряде, исключая разряд единиц. Таким образом к рис 15.1 нужно добавить еще одну комбинацию (рис. 15.3), которая справедлива для всех разрядов двоичных чисел (двоек, четверок, восьмерок и т. д.), за исключением разряда единиц.

Полусумматоры

Рассмотрим таблицу истинности для двоичных чисел (табл. 15.1). входные столбцы таблицы заполнены значениями слагаемых. В качестве выходных используется столбец для суммы и столбец для переноса.

Таблица 15.1. Таблица истинности полусумматора

Очень интересно - Дипломная работа: АРМ специалиста по предоставлению платных дополнительных образовательных услуг

Для построения схемы полусумматора, определим из табл. 15.1 булево выражение, которым можно описать состояние выходов и : , т. е. для обеспечения требуемого логического уровня на выходе входные сигналы нужно подать на входы логического элемента И;

, для реализации такой логической функции можно использовать два логических элемента И и один логический элемент ИЛИ. Кроме этого, такая логическая функция может быть реализована логическим элементом исключающее ИЛИ. Состояние этого выхода запишем в более простой булевой форме: .

Построим логическую схему полусумматора, который состоит из двух логических элементов: 2-входового логического элемента И и 2-входового логического элемента исключающее ИЛИ (рис. 15.4). Полусумматор имеет два входа (А,В) и два выхода (У,С0).

Рис. 15.4. Логическая схема полусумматора

Вам будет интересно - Реферат: Архиваторы

Полусумматор осуществляет сложение только в разряде единиц. Для двоичного сложения в разрядах двоек, четверок, восьмерок и т. д. Необходимо пользоваться полным сумматором.

Полный сумматор

Рассмотрим таблицу истинности, в которой представлены все возможные комбинации двоичный одноразрядных слагаемых А и В и сигнала переноса Cin (табл. 15.2).

Таблица 15.2 Таблица истинности сумматора

Похожий материал - Реферат: Архивация и восстановление файлов

Таблица 15.2 - таблица истинности для полного сумматора. Полные сумматоры используются для сложения во всех двоичных разрядах, кроме разряда единиц. Полные сумматоры имеют три входа: А, В и дополнительный вход переноса.

Один из способов построения логической структуры полного сумматора показан на рис. 15.5. В данном способе используется два полусумматора и логический элемент ИЛИ. Соответствующие булево выражение для этой логической структуры имеют вид , .

Рис. 15.5. Структурная схема полного сумматора