ОБЛАСНИЙ КОМУНАЛЬНИЙ ВИЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД "ІНСТИТУТ ПІДПРИЄМНИЦТВА "СТРАТЕГІЯ"
КАФЕДРА ЕКОНОМІЧНОЇ КІБЕРНЕТИКИ
Курсова робота
З дисципліни: "Обчислювальні методи"
На тему: "Рішення систем нелінійних рівнянь. Метод ітерацій. Метод Ньютона - Канторовича."
Студента Іощенка І.Г.
группа С-05-51
Керівник Андрейшина Н.Б.
Філімоненко М.І.
Возможно вы искали - Реферат: Розвиток економетричних моделей та методів в розвинутих країнах та приклади їх застосування в Україні
м. Жовті Води 2007
Зміст
Вступ
1. Рішення систем нелінійних рівнянь
1.1 Метод ітерацій
Похожий материал - Дипломная работа: Розвиток теорії надання банківських послуг на прикладі ДФ АБ "Правексбанк"
1.1.1 Приклад рішення системи нелінійних рівнянь методом ітерацій
1.2 Метод найшвидшого спуску
1.2.1 Приклад рішення системи нелінійних рівнянь методом спуска
1.3 Метод Ньютона-Канторовича
Вступ
При рішенні систем нелінійних і трансцендентних рівнянь дуже складно знайти точне рішення, тому точним рішення рівняння не є. Задача пошуку кореня системи рівняння може вважатися практично вирішеною, якщо ми зуміємо визначити корінь з потрібним ступенем точності і вказати межі можливої погрішності. Умови збіжності метода Ньютона для системи досліджувалися Виллерсом, Стениним, Канторовичем.
Очень интересно - Реферат: Структура графа состояний клеточных автоматов определённого типа
У наш час рішення систем нелінійних рівнянь досить актуальна тема, адже її можна застосовувати на практиці для рішення кола задач. Прикладом цього є задачі, які виникають у геодезії.
Цілю моєї курсової роботи є опис методів рішення систем нелінійних рівнянь, а також продемонструвати на практиці рішення системи рівнянь методом Ньютона - Канторовича та написання програми до цього методу.
1. Рішення систем нелінійних рівнянь
Задачі, які виникають при математичній обробці результатів вимірювання, як правило, зводяться до рішення нелінійних систем алгебраїчних або трансцендентних рівнянь:
або у векторній формі
Вам будет интересно - Контрольная работа: Структура системного анализа
F (X) = 0.
Як і у випадку одного рівняння, рішення нелінійних систем рівнянь поділяється на два етапи:
знаходження приблизного рішення системи;
уточнення приблизного рішення.
Для знаходження приблизного значення коренів системи рівнянь не існує загальних методів. Завжди кожна нелінійна система повинна розглядатися як спеціальна задача.
Похожий материал - Реферат: Структура эконометрики
Для уточнення коренів розробленні загальні методи. Найбільш розповсюдженні в нинішній час є метод ітерацій, метод спуска, метод Ньютона та деякі їх модифікації.
1.1 Метод ітерацій
Нехай дана система нелінійних рівнянь спеціального виду
(1)
де функції , ,... ., дійсно визначенні та непереривні на деякій області ізольованого рішення цієї системи.