Идеи антропного космологического принципа, развивавшиеся в последнем столетии XX века, представляют большой научный интерес с точки зрения ответа на вопросы происхождения и эволюции окружающего мира. Основная идея этого принципа состоит в том, что фундаментальные свойства Вселенной, значения основных физических констант и даже форма физических закономерностей тесно связаны с фактом структурности Вселенной во всех масштабах - от элементарных частиц до сверхскоплений галактик - с возможностью существования условий, при которых возникают сложные формы движения материи, жизнь и человек.
Проблема возникновения структурности мира и жизни во Вселенной традиционно трактуется следующим образом: окружающая нас Вселенная обладает определенными физическими свойствами и закономерностями, познаваемыми нами. Как в таком случае происходит эволюция Вселенной, приводящая к достаточно сложным структурам, как зарождается и эволюционирует в такой Вселенной жизнь? От ответа на эти, во многом еще не решенные вопросы, зависит возможность существования жизни в других областях Вселенной, в другие времена и направления ее поиска.
Любая физическая теория, например уравнения Максвелла в электродинамике, ставит перед собой задачу дать полное физическое описание той или иной системы, если известен полный набор начальных данных, поскольку в различных физических явлениях начальные данные различны. Но когда мы обращаемся к космологии, вопрос о начальных данных и фундаментальных постоянных неразрывно связан с тем, почему Вселенная именно такая, какой мы ее наблюдаем. Прежде чем подойти к ответу на этот вопрос, рассмотрим, какими представляются современному естествознанию начальные условия нашей Вселенной.
1. Современная космология
Наиболее важным в современной стандартной космологической модели Вселенной является вопрос о свойствах ранней Вселенной. Удовлетворительное описание свойств ранней Вселенной дается в модели В. де Ситтера. Более поздние промежутки эволюции Вселенной даются в модели А.А. Фридмана. Возникающая при этом зависимость размеров Вселенной от времени может быть примерно описана кривой, показанной на рис. 1. Время перехода от деситтеровской стадии расширения (1 ) к фридмановской (2 ) обозначено через tF . Физический смысл времени tF в том, что оно показывает момент радикального изменения закона расширения Вселенной. Переход от одного закона к другому в момент tF означает радикальное изменение основных свойств Вселенной в этот момент, изменение ее фазового состояния.
Возможно вы искали - Реферат: Химия и алхимия озонового слоя
Модель экспоненциального роста размеров Вселенной де Ситтера на начальной стадии ее эволюции получила название модели раздувающейся Вселенной [1]. По этой модели при вся энергия мира была заключена в его вакууме. Деситтеровская стадия расширения длилась примерно 10-35 с. Все это время Вселенная быстро расширялась, заполняющий ее вакуум как бы растягивался без изменения своих свойств. Образовавшееся состояние Вселенной было крайне неустойчивым, энергетически напряженным. В таких случаях достаточно возникновения малейших неоднородностей, играющих роль случайной затравки, чтобы вызвать переход в другое состояние (в качестве примера можно привести явление кристаллизации). При переходе вакуума в другое состояние мгновенно выделилась колоссальная энергия за счет разности его начального и конечного состояний. Примерно за 10-32 с пространство раздулось в громадный раскаленный шар с размерами много большими видимой нами части Вселенной. При этом произошло рождение из вакуума реальных частиц, из которых со временем сформировалось вещество нашей Вселенной.
В последнее время усиленно обсуждаются причины того первотолчка, который был началом расширений нашей Вселенной. Один из возможных механизмов, основанный на гипотезе о существовании кванта единого пространства-времени, описан в теории инфляционной Вселенной. Рассмотрим ее основные положения и выводы.
А. Эйнштейн выдвинул идею о существовании космического отталкивания. Если учесть эти силы в уравнениях динамики Вселенной, то полное ускорение оказывается равным
Ускорение тяготения атяг
Похожий материал - Реферат: Почему меняется климат Земли: гипотеза солнечно-атмосферного резонанса
а ускорение отталкивания аотт в соответствии с гипотезой Эйнштейна пропорционально R:
$а_{отт} = const \cdot R.$
Числовое значение константы в этой формуле можно найти определив среднюю плотность вещества во Вселенной. В настоящее время считается, что очень близко к 10-29 г/см3 и
Очень интересно - Реферат: Солнечно-земная физика
где - космологическая постоянная, равная ~10-56 см-2 .
Рассмотрим случай, когда во Вселенной нет вещества, она пуста. При этом М = 0 и атяг = 0. Динамика Вселенной описывается ускорением аотт . Можно показать, что при этом две пробные частицы, помещенные в такую пустую Вселенную, будут удалятся друг от друга по закону
Согласно современным концепциям естествознания, вакуум не пустота, в физическом вакууме происходят процессы рождения и уничтожения виртуальных частиц. Это своеобразное кипение вакуума нельзя устранить, ибо оно означало бы нарушение одного из основных законов квантовой физики, а именно соотношения неопределенностей Гейзенберга. Как показал Я.В. Зельдович в 1967 году, в результате взаимодействия виртуальных частиц в вакууме появляется некоторая плотность энергии и возникает отрицательное давление. Такое вакуумподобное состояние неустойчиво, и с течением времени оно распадается, превратившись в обычную горячую материю. Энергия вакуумподобного состояния перейдет в энергию обычной материи, гравитационное отталкивание сменится обычной гравитацией, замедляющей расширение. С этого момента Вселенная начнет развиваться по известной стандартной космологической горячей модели эволюции. Рассмотрим исходные положения этой модели и ее основные результаты.
Горячая модель Вселенной, как и любая другая, исходит из наблюдаемого в настоящее время факта ее расширения и объясняет три достоверно установленных факта: наличие барионной асимметрии Вселенной; космическое отношение числа фотонов к числу барионов, примерно равное 109 ; однородность и изотропность реликтового излучения. Теория Большого Взрыва в наши дни считается общепринятой. Согласно этой теории, наша Вселенная развивалась из первоначального состояния, которое можно представить в виде сгустка сверхплотной раскаленной материи. Излучение и вещество в нем находились в тепловом равновесии. В этой ранней Вселенной фотоны эффективно взаимодействовали с веществом, а число частиц было равно числу античастиц.
Вам будет интересно - Реферат: Мировая линия Гамова
Для объяснения барионной асимметрии Вселенной предполагается, что распад лептокварков происходит с превышением числа рождающихся кварков над антикварками. Исходя из наблюдаемой сейчас барионной асимметрии, число кварков должно относиться к числу антикварков как 1000 000001 : 1000000000. Физическим обоснованием такого предположения является существование в микромире процессов, идущих с нарушением зарядовой симметрии (распад К0 -мезонов). При этом важным является то, что барионная асимметрия не зависит от начальных условий. Родившиеся в результате распада лептокварков антикварки и кварки аннигилируют, небольшой же избыток кварков выживает и является материалом, из которого строится вещество Вселенной. Нейтроны и протоны - основные строительные элементы нашего вещества - появляются через 10-6 с после Большого Взрыва. До времени с подавляющая часть энергии сгустка заключена в излучении, после этого момента в связи с образованием протонов - в веществе. По мере расширения и остывания Вселенной в момент времени t = 3 мин 44 с начинается образование стабильных ядер легких элементов - эра космологического нуклеосинтеза. Длительность этой эры невелика - всего полчаса. Рассчитанная по этой модели концентрация гелия во Вселенной (около 25% по массе) совпадает с данными астрофизических наблюдений.
После эры космологического нуклеосинтеза Вселенная тихо остывает. Ее температура снижается настолько, что электроны начинают соединяться с ядрами, образуя атомы. Энергии фотонов не хватает для их разрушения, с этого момента излучение отрывается от вещества. Дальнейшая эволюция излучения происходит в полном соответствии с законами теплового излучения. Теоретическое значение температуры этого реликтового излучения, дожившего до наших дней, в точности соответствует экспериментальным данным. Таким образом, только водород и гелий образуются собственно в Большом Взрыве. Тяжелые элементы образуются позднее в недрах звезд и рассеиваются в пространстве благодаря звездным взрывам.
Для дальнейшего развития наиболее важным представляется то, что в первые мгновения образования нашей Вселенной сформировался весь тот набор физических закономерностей и фундаментальных постоянных, которые и обусловили ход последующей эволюции Вселенной.
2. Фундаментальные мировые постоянные
Фундаментальные мировые постоянные - это такие константы, которые дают информацию о наиболее общих, основополагающих свойствах материи [2]. К таковым, например, относятся G, c, e, h, me и др. Общее, что объединяет эти константы, - это содержащаяся в них информация. Так, гравитационная постоянная G является количественной характеристикой универсального, присущего всем объектам Вселенной взаимодействия - тяготения. Скорость света c есть максимально возможная скорость распространения любых взаимодействий в природе. Элементарный заряд e - это минимально возможное значение электрического заряда, существующего в природе в свободном состоянии (обладающие дробными электрическими зарядами кварки, по-видимому, в свободном состоянии существуют лишь в сверхплотной и горячей кварк-глюонной плазме). Постоянная Планка h определяет минимальное изменение физической величины, называемой действием, и играет фундаментальную роль в физике микромира. Масса покоя me электрона есть характеристика инерционных свойств стабильной легчайшей заряженной элементарной частицы.
Константой некоторой теории мы называем значение, которое в рамках этой теории считается всегда неизменным. Наличие констант при выражениях многих законов природы отражает относительную неизменность тех или иных сторон реальной действительности, проявляющуюся в наличии закономерностей.
Похожий материал - Доклад: Фреймовые модели представления знаний
Сами фундаментальные постоянные G, c, e, h являются едиными для всех участков Вселенной и с течением времени не меняются (об этом говорят наблюдения и стандартная теория), по этой причине их называют мировыми постоянными. Некоторые комбинации мировых постоянных определяют нечто важное в структуре объектов природы, а также формируют характер некоторых фундаментальных теорий. Так, определяет размер пространственной области для атомных явлений, а - характерные энергии для этих явлений. Квант для крупномасштабного магнитного потока в сверхпроводниках задается величиной. Предельная масса для стационарных астрофизических объектов определяется комбинацией, где mN - усредненная масса нуклона.
Анализ размерностей фундаментальных постоянных приводит к новому пониманию проблемы в целом. Отдельные размерные фундаментальные постоянные, как уже отмечалось выше, играют определяющую роль в структуре соответствующих физических теорий. Когда же речь идет о выработке единого теоретического описания всех физических процессов, формирования единой научной картины мира, размерные физические постоянные уступают место безразмерным фундаментальным константам, таким, как, , , , me / mp и (mn - mp )/ mN . Роль этих постоянных в формировании структуры и свойств Вселенной очень велика. Постоянная тонкой структуры ae является количественной характеристикой одного из четырех фундаментальных взаимодействий, существующих в природе, - электромагнитного. Помимо электромагнитного взаимодействия фундаментальными взаимодействиями являются также гравитационное, сильное и слабое. Существование безразмерной константы электромагнитного взаимодействия предполагает, очевидно, наличие аналогичных безразмерных констант, являющихся характеристиками остальных трех типов взаимодействий. Эти константы также характеризуются следующими безразмерными фундаментальными постоянными:
константа сильного взаимодействия;
константа слабого взаимодействия