Реферат: Особенности реализации экспертных систем на базе логической модели знаний

1. Понятие логической модели знаний.

В основе лог. модели знаний лежит понятие формальной теории и отношения, которые существуют между единицами знаний можно описывать только с помощью синтаксических правил, допустимых в рамках этой теории.

Формальная теория задается всегда четверкой символов S=<B, F, A, R>, где

В - конечное множество базовых символов, иначе - алфавит теории S;

F - подмножество выражений теории S, называемых формулами теории. Обычно имеется эффективная процедура, которая представляет собой совокупность правил, позволяющих из элементов множества В строить синтаксически правильные выражения.

Возможно вы искали - Шпаргалка: Ответы на вопросы по курсу “Системное программирование”

А - выделенное множество правил, называемых аксиомами теории, т. е. множество априорно истинных формул.

R - конечное множество отношений { r1 , r2 , ... , rn } между формулами, называемыми правилами вывода. Для любого ri существует целое положительное число j, такое, что для каждого множества, состоящего из j формул, и для каждой формулы F эффективно решается вопрос о том, находятся ли эти j-формулы в отношении ri с формулой F. Если ri выполняется, то F называют непосредственным следствием F-формул по правилу ri .

Следствием (выводом) формулы в теории S называется такая последовательность правил, что для любого из них представленная формула явл-ся либо аксиомой теории S, либо непосредственным следствием.

Правила вывода, которые разрабатываются проектировщиками, позволдяют расширить множество формул, которые явл-ся аксиомами теории.

Формальная теория наз. разрешимой, если существует эффективная процедура, позволяющая узнать для любой заданной формулы, существует ли её вывод в теории S.

Похожий материал - Курсовая работа: Информационные системы

Формальная теория S наз. Непротиаворечивой, если не существует такой формулы А, что и А, и не А выводимы в данной теории.

Наиболее распространенной формальной теорией, используемой в системах искуственного интеллекта явл-ся исчисление предикатов, то есть функций, которые могут принимать только 2 значения.

К достоинствам логической модели относят:

- наличие стандартной типовой процедуры логического вывода (доказательства теорем). Однако такое единообразие влечет за собой основной недостаток модели - сложность использования в процессе логического вывода эвристик, отражающих специфику ПО.

К другим недостаткам логической модели относят:

Очень интересно - Шпаргалка: Лекции по информатике

- “монотонность”;

- “комбинаторный взрыв”;

- слабость структурированности описаний.

2. Характеристика языка предикатов первого порядка. Особенности представления знаний.

В основе языка предикатов первого порядка лежит понятие предикатов, то есть логическая функция от одной или нескольких нелогических пременных. Функция может принимать значения истина (t) или ложь (f). В рамках логики утверждение считается истинным, если и относящееся к нему предположение считается истинным и заключение самого утверждения тоже истина.

Вам будет интересно - Реферат: Prolog. Реализация на ПЭВМ

Синтаксис языка предикатов включает: предикативные символы, символы переменных, константы (?), а также разделители ( ), [ ], “, ‘.

Предикативные символы используются для обозначения отношений. Объекты отношений записываются в ( ) после предикативного символа и наз-ся аргументами. Полная запись отношения наз-ся атомной или атомарной формулой.

Атомарная формула:

Является ( Иванов, спец.—поЭВМ)

предикативный терм 1 терм 2

Похожий материал - Реферат: Формализация понятия алгоритма

символ

Термы могут представляться констанатами и переменными. Разрешено также в качестве термов использовать функции, к-рые обязательно должны быть определены в рамках ПО. Проектировщик ЭС заранеее определяет, как интерпретировать порядок термов в отношении. Допустимые выражения в исчислении предикатов, в частности атомарные формулы, наз-ся правильно построенными функциями ( ППФ ). В языке предикатов для каждой ППФ обязательно определяется конкретная интерпретация. Как только для ППФ определена интерпретация, говорят, что формула имеет значение “истина”, если соответствующее утверждение ПО истинно, в противном случае ППФ имеет значение “ложь”.

Из формул можно составить предложение с помощью логических связок: конъюнкция, дизъюнкция, импликация, отрицание.

Конъюнкция (Ù ) используется для образования составных фраз: