Реферат: Формулы по математическому анализу



Правила интегрирования


Основные правила дифференцирования

Пусть С—постоянная, u=u(x), v=v(x) – функции, имеющие

производные.


7)


Возможно вы искали - Реферат: Законы движения небесных тел и строение Солнечной системы

Интегрирование по частям Основные свойства

определённого интеграла


Интегрирование простейших дробей


Замена переменной в

неопределенном интеграле


Похожий материал - Шпаргалка: Все формулы по математике в школе

Площадь плоской фигуры

Площадь криволинейной трапеции, ограниченной кривой , прямыми и отрезком[a, b] оси Ox, вычисляется по формуле

Площадь фигуры, ограниченной кривыми и прямыми , находится по формуле

Если кривая задана параметрическими уравнениями , то площадь криволинейной трапеции, ограниченной этой кривой, прямыми и отрезком[a, b] оси Ox, выражается формулой

Очень интересно - Реферат: Принципы квантовой механики

где определяются из уравнений

Площадь криволинейного сектора, ограниченного кривой, заданной в полярных координатах уравнением и двумя полярными радиусами находится по формуле

Длина дуги плоской кривой

Вам будет интересно - Шпаргалка: Основные тригонометрические формулы

Если кривая y=f(x) на отрезке [a, b] – гладкая (т.е. производная непрерывна), то длина соответствующей дуги этой кривой находится по формуле


При параметрическом задании кривой x=x(t), y=y(t) [x(t) и y(t) – непрерывно дифференцируемые функции] длина дуги кривой, соответствующая монотонному изменению параметра , вычисляется по формуле


Если гладкая кривая задана в полярных координатах уравнением , то длина дуги равна

Вычисление объема тела

1. Вычисление объема тела по известным площадям поперечных сечений.

Если площадь сечения тела плоскостью, перпендикулярной оси Ox, может быть выражена как функция от x, т.е. в виде , то объем части тела, заключенной между перпендикулярными оси Ox плоскостями x=a и x=b, находится по формуле

Похожий материал - Реферат: Мир глазами Нильса Бора: волны и их восприятие

2. Вычисление объема тела вращения. Если криволинейная трапеция, ограниченная кривой и прямыми вращается вокруг оси Ox, то объем тела вращения вычисляется по формуле


Если фигура, ограниченная кривыми и прямыми x=a, x=b, вращается вокруг оси Ox, то объем тела вращения

Вычисление площади поверхности вращения

Если дуга гладкой кривой вращается вокруг оси Ox, то площадь поверхности вращения вычисляется по формуле

Если кривая задана параметрическими уравнениями , то