Курсовая работа: Оптичні випромінюючі прилади

1. Загальні положення

Спектр електромагнітних хвиль

Спектр електромагнітних хвиль можна поділити на декілька діапазонів, що об’єднують випромінювання з досить близькими властивостями (рис.1).

Рис.1.Спектр електромагнітних хвиль

Возможно вы искали - Реферат: Монтажная микросварка

Гама-випромінювання виробляється збудженими ядрами атомів, а також в результаті взаємоперетворень деяких елементарних частить. Особливість гама-випромінювання – яскраво виражені корпускулярні властивості.

Радіохвилі – генеруються при коливаннях вільних електричних зарядів і мають основні особливості класичних хвиль.

Оптичне випромінювання у різних умовах має як хвильові, так і корпускулярні властивості. Усередині оптичного діапазону виділяють чотири зони: рентгенівську, ультрафіолетову, видиму та інфрачервону.

Рентгенівське випромінювання відкрите у 1895 р. К. Рентгеном, виникає при гальмування швидких електронів у речовині. Головна особливість такого випромінювання – його висока проникна здатність.

Ультрафіолетове випромінювання відкрите у 1801 р. Й. Ріттером проявляє інтенсивну фотохімічну, біологічну та фотоелектричну дію та викликає світіння деяких кристалів.

Похожий материал - Курсовая работа: Мостовой усилитель мощности звуковой частоты

Видиме випромінювання безпосередньо приймається людським оком та має фотохімічну, біологічну та фотоелектричну дію. До цієї частини спектру використовується термін „світло”.

Інфрачервоне випромінювання відкрите у 1800 р. В. Гершелем. Для нього найбільш характерна теплова дія, хоча при взаємодії з речовиною мають місце також фотоелектричні та інші ефекти.

Теплове випромінювання

Теплове випромінювання є джерелом випромінювання різних типів в залежності від абсолютної температури тіла. Спектр та інтенсивність теплового випромінювання визначаються двома законами.

Закон Стефана-Больцмана визначає інтенсивність випромінювання в залежності від абсолютної температури абсолютно чорного тіла. Він має вигляд:

Очень интересно - Курсовая работа: Мощный стереофонический усилитель

I = σT4 ,

де I – інтенсивність випромінювання, Т – абсолютна температура, σ – постійна Стефана-Больцмана, її значення дорівнює 5,67·10-8 Вт/м2 К4 .

Закон зміщення Віна визначає довжину хвилі, на якій має місце найбільш інтенсивне випромінювання. він має вигляд:

λмакс = b/T,

де λмакс – довжина хвилі найбільш інтенсивного випромінювання, b – постійна Віна, що дорівнює b = 2898 мкм·К, Т – абсолютна температура.

Вам будет интересно - Курсовая работа: Мультимедийный проектор

Обидва закони ілюструються графіками спектрів теплового випромінювання абсолютно чорного тіла рис.2, де 1 – при температурі 6000°К, 2 – при температурі 4000°К, 3 – при температурі 2000°К, 4 – при температурі 1000°К, 5 – при температурі 600°К, 6 – при температурі 300°К, 7 пряма, що ілюструє закон зміщення Віна.

Рис.2. Спектри теплового випромінювання

На рис.2 двома тонкими вертикальними лініями виділена зона видимого випромінювання, яке бачить людське око. Як бачимо, випадки 5 та 6 дають випромінювання. яке людина не бачить. У випадку 4 невелику частину випромінювання людина вже бачить (розігрітий до 700°С, або 1000°К метал вже світить червоним світлом). У випадку 3 світіння вже стає більш рівномірним, людина його бачить як жовте. Але найбільш рівномірне світіння у діапазоні людського зору у випадку 1. Це температура поверхні Сонця, до якого пристосований людський зір. Таке світіння людина бачить як біле. Велика частина випромінювання Сонця заходить в ультрафіолетову зону.

У якості джерел видимого та інфрачервоного випромінювання часто використовують лампи розжарення. Для виготовлення ниток розжарення звичайно використовують вольфрам з різними присадками. Температуру нитки можна довести до 3000°С (між кривими 2 та 3 на рис.2). В процесі роботи вольфрам випаровується з нитки. Щоб запобігти цьому у колбу лампи вводять деяку кількість галогену (йод або бром). Галогенні лампи мають більше випромінювання, більший строк роботи та менші розміри.

Похожий материал - Курсовая работа: Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями

На рис.3 наведений баланс енергії лампи розжарення.

З нього видно, що лампа розжарення перетворює у випромінювання 86% енергії, але у видиме світло перетворюється тільки 12% енергії. Інші 74% перетворюються в інфрачервоне світло. Це означає, що така лампа – ідеальне джерело тепла, тому її застосовують для сушіння пофарбованих виробів. 14% - втрати у цоколі та виводах лампи.

Рис.3. Баланс енергії лампи розжарення