Курсовая работа: Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

Возможно вы искали - Курсовая работа: Расчет наружного охлаждения

Похожий материал - Курсовая работа: Расчет норм водопотребления и водоотведения на предприятиях теплоэнергетики

КУРСОВАЯ работа

Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

1. Исходные данные

1. Задан следующий тензор напряжений:

Очень интересно - Курсовая работа: Расчет однотактного обратноходового преобразователя напряжения

МПа.

2. Направляющие косинусы площадки, по которой нужно вычислить напряжения, равны:

.

1.1 Определение инвариантов напряженного состояния

Инвариантом называется величина, независящая от системы координат. В частности, напряженное состояние в любой точке является инвариантом, несмотря на то, что составляющие тензора в разных системах координат, т.е. напряжения, действующие по координатным площадкам, различны. Однако, имеются выражения, составленные из напряжений по координатным площадкам, которые остаются постоянными в любой системе координат. Эти выражения и называются инвариантами напряженного состояния в точке или инвариантами тензора напряжений.

( 1)


Вам будет интересно - Лабораторная работа: Расчет осветительной установки производственного помещения

1.2 Определение главных напряжений

Главными напряжениями называются нормальные напряжения, действующие по площадкам, где отсутствуют касательные напряжения. Координатные оси, являющиеся нормалями к таким площадкам, называются главными осями тензора напряжений, а сами площадки – главными площадками.

Главные напряжения определяются из кубичного уравнения:

(2)

Подставляя численные значения инвариантов тензора напряжений из(1), получаем:

Похожий материал - Курсовая работа: Расчет осветительных сетей предприятия

Кубические уравнения общего вида могут иметь комплексные корни, уравнения для определения главных напряжений и главных деформаций всегда имеют три действительных корня. Решать их можно по-разному.

1. Можно сначала определить подбором один из корней уравнения, а затем разложить левую часть уравнения (2) на два сомножителя: линейный двучлен и квадратный трехчлен. После этого из решения квадратного уравнения определяются два оставшиеся корня.