Лабораторная работа: Определение частотной дисперсии стеклянной призмы с помощью гониометра

ОПРЕДЕЛЕНИЕ ЧАСТОТНОЙ ДИСПЕРСИИ СТЕКЛЯННОЙ ПРИЗМЫ С ПОМОЩЬЮ ГОНИОМЕТРА

ЦЕЛЬ РАБОТЫ: определение спектральной зависимости коэффициента преломления стеклянной призмы и оценка ее спектральных характеристик.

1. ПРИНАДЛЕЖНОСТИ : гониометр ГС-5, стеклянная плоскопараллельная призма, ртутная лампа.

2. Электронная, классическая теория частотной дисперсии

Многие оптические явления находят удовлетворительное объяснение в предположении, что связь между векторами и (а также и ) локальна во времени и пространстве. Это означало бы, что и определились в любой момент времени пространства значениями и в тот же момент времени и при том же значении . Однако дело обстоит иначе. В ряде явлений необходимо учитывать нелокальность во времени и пространстве. К таким явлениям можно отнести частотную дисперсию диэлектрической проницаемости вещества, естественное вращение плоскости поляризации и некоторые другие. В данной работе исследуется частотная дисперсия стеклянной призмы. Рассмотрим подробнее это явление.

Возможно вы искали - Контрольная работа: Определение электрических нагрузок и расчет электрических сетей жилых зданий

Будем считать, что наше поле однородно по пространству (пространственной нелокальностью пренебрегаем), тогда для стационарного случая имеет место соотношение, определяющее связь индукции с напряженностью электрического поля и поляризацией среды :

.(1)

Однако наличие конечных масс электронов и ионов вещества, заряды которых определяют поляризацию , приводит к инерционности появления для переменного поля . Следовательно, воздействие электрического поля электромагнитной волны приведет к временной нелокальности поляризации .

В рамках линейной электродинамики поляризации среды , вызванная электрическим толчком, пропорциональна . Считая, что среда изотропна, мы запишем связь в момент времени :

, (2)

Похожий материал - Контрольная работа: Определение эффективности действия ударника по преграде и его рациональных конструктивных параметров

где функция зависит от свойств среды и от времени с момента электрического толчка. Очевидно, что при в силу инерционности электронов и ионов , а при в силу наличия затухания (реальные среды диссипативны) .

Для задач, когда поле действует достаточно долгое время (реальная электромагнитная волна), мы разбиваем весь период на достаточно малые промежутки времени, сводя задачу к последовательным электрическим толчкам. Тогда вклад в поляризацию среды в момент времени , внесенный в более ранним толчком , будет равен . В силу суперпозиции полный вектор поляризации в момент времени определяется:

(3)

Используя переход к новой переменной

.(4)

Очень интересно - Контрольная работа: Оптика 2

Учитывая связь (1), запишем

. (5)

Интегрирование в (5) производится во времени, предшествующему моменту . Этого требует принцип причинности, утверждающий, что каждое событие определяется только прошедшими событиями и не может зависеть от будущих.

Для монохроматической волны выражение (5) преобразуется:


,(6)

Вам будет интересно - Реферат: Оптика

где связь между и записана формально в локальной форме с помощью диэлектрической проницаемости как функция частоты:

. (7)

Лорентцом впервые была построена классическая, электронная теория, позволяющая получить явный вид (7). В рамках этой теории среду мы рассматриваем как совокупность электронных, гармонических, затухающих осцилляторов. Движение такого электронного осциллятора будет описываться следующим уравнением:

(8)

где - масса электрона, - заряд свободного электрона, - коэффициент упругой связи электрона с ядром, - коэффициент, обусловленный затуханием колебаний осциллятора, - эффективное поле, действующее на электронный осциллятор. В общем случае отличается от среднего макроскопического поля , входящего в уравнение Максвелла. Для разряженных газов . В такой среде под действием плоской линейно поляризованной вдоль Х электромагнитной волны (в такой волне вектор напряженности электрического поля направлен вдоль X и не имеет своей ориентации при распространении, а фронт волны представляет плоскость) уравнение движения электрона (8) приобретает вид:

Похожий материал - Реферат: Оптика атмосферы

(9)

где - коэффициент затухания (экстенции), - собственная частота электронного осциллятора, - амплитуда электрического поля волны. Нетрудно показать, что решение уравнения (9) имеет вид:

. (10)

Учитывая связь диэлектрической проницаемости с электронной поляризуемостью отдельного атома , можно записать: