Металлы – это элементы, проявляющие в своих соединениях только положительные степени окисления, и в простых веществах которые имеют металлические связи. Металлическая кристаллическая решетка - решетка, образованная нейтральными атомами и ионами металлов, связанными между собой свободными электронами. У металлов в узлах кристаллической решетки находятся атомы и положительные ионы. Электроны, отданные атомами, находятся в общем владении атомов и положительных ионов. Такая связь называется металлической . Для металлов наиболее характерны следующие физические свойства: металлический блеск, твердость, пластичность, ковкость и хорошая проводимость тепла и электричества. Теплопроводность и электропроводность уменьшается в ряду металлов:
Аg Сu Аu Аl Мg Zn Fе РЬ Hg
Многие металлы широко распространены в природе. Так, содержание некоторых металлов в земной коре следующее: алюминия — 8,2%; железа — 4,1%; кальция — 4,1%; натрия — 2,3%; магния — 2,3%; калия - 2,1%; титана — 0,56%.
Большое количество натрия и магния содержится в морской воде: — 1,05%, — 0,12%.
В природе металлы встречаются в различном виде:
— в самородном состоянии: серебро , золото , платина , медь , иногда ртуть
— в виде оксидов: магнетит Fe3 O4 , гематит Fe2 О3 и др.
— в виде смешанных оксидов: каолин Аl2 O3 • 2SiO2 • 2Н2 О, алунит (Na,K)2 O • АlО3 • 2SiO2 и др.
— различных солей:
сульфидов: галенит PbS, киноварь НgS,
хлоридов: сильвин КС1, галит NaCl, сильвинит КСl• NаСl, карналлит КСl • МgСl2 • 6Н2 О, сульфатов: барит ВаSO4 , ангидрид Са8 О4 фосфатов: апатит Са3 (РО4 )2 , карбонатов: мел, мрамор СаСО3 , магнезит МgСО3 .
Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий — в качестве примеси в цинковые руды, ниобий и тантал — в оловянные.
Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий.
Элементы I группы Li, Na, K, Rb, Cs, Fr
Общая характеристика: К элементам главной подгруппы I-ой группы Периодической системы относятся Li, Na, K, Rb, Cs, Fr. Их принято называть щелочными металлами. История открытия химических элементов IA группы.
Эти металлы в своих рядах являются первыми, т.е. именно у них начинается заполнение электронами нового электронного слоя. Их валентную электронную конфигурацию можно в общем виде обозначить так: ns1 , где n - номер периода, в котором находится металл. Плотность, температура плавления, температура кипения простых веществ элементов IA группы.
Щелочные металлы имеют серебристо-белый цвет, а цезий - золотисто-желтый. Хранят щелочные металлы под слоем керосина или бензола. Металлические К, Rb, Cs самопроизвольно загораются на воздухе.
Первый потенциал ионизации, сродство к электрону и электроотрицательность по Полингу атомов элементов IA группы.
Возможно вы искали - Реферат: Металлы в периодической системе Д.И. Менделеева
При комнатной температуре щелочные металлы находиться в твердом (кристаллическом) состоянии, хотя все они имеют очень невысокую температуру плавления. Первые три металла легче воды и плавают на ее поверхности, вступая в бурную реакцию:
2 Me + 2 H2 O = 2 MeOH + H2 .
Щелочные металлы самые активные из всех металлов. Поэтому иногда говорят, что атомы щелочных металлов "стремятся отдавать свой валентный электрон, чтобы приобрести устойчивую электронную оболочку инертного газа". Это не совсем так: чтобы у атома щелочного металла отнять электрон и превратить его в положительно заряженный ион:
Me - e + ПИ = Me+
необходимо затратить достаточно большую энергию ПИ (потенциал ионизации). При переходе от Li к Cs она уменьшается и поэтому активность металла, т.е. способность к химическому взаимодействию - увеличивается. И уж совсем неожиданны данные о сродстве к электрону (СЭ) у атомов щелочных металлов: изолированные атомы щелочных металлов "с удовольствием", т.е. с выделением энергии (СЭ) присоединяют к себе электрон:
Me + e = Me- + СЭ.
Отсюда следует очень важный вывод, что поведение изолированных атомов щелочных металлов - это одно, а их поведение в молекулах, т.е. при взаимодействии с атомами других химических элементов - это качественно другая ситуация. В молекулах атомные орбитали преобразовываются в молекулярные орбитали, валентные электроны атомов в молекуле находятся в совместном пользовании или сильно смещаются к одному из атомов вплоть до образования ионной связи.
Типичные степени окисления элементов IA группы в различных соединениях +1. Таким образом, имеются две степени окисления у элементов IA группы: 0 - в молекулах Ме2 и в металлическом состоянии и +1 - в соединениях ( ярко выраженная ионная связь. Очень высокая химическая активность щелочных металлов обусловлена низкими ПИ, легко разрушаемой кристаллической структурой и малой плотностью.
Похожий материал - Курсовая работа: Метаморфизм углей
Получение
Li, Na, K (Ме) получают электролизом расплавов их хлоридов или гидроксидов:
2KCl = 2K+ + 2Cl- ,
катод 2K+ + 2e = 2K; анод 2Cl- -2e = Cl2 .
Температуры плавления хлоридов и гидроксидов щелочных металлов, o С
| Анион | Li | Na | K | Rb | Cs |
| Cl- | 610 | 801 | 776 | 723 | 645 |
| OH- | 473 | 322 | 405 | 385 | 343 |
Гидроксиды МеОН имеют меньшую, чем у хлоридов, температуру плавления, они термически вполне устойчивы, а при электролизе из расплавов идет процесс:
4МеOH = 4Ме + 2H2 O + O2 .
Используя относительно меньшую, чем у Al, Si, Ca, Mg, температуру кипения, можно получать щелочные металлы восстановлением их из оксидов, хлоридов, карбонатов при высоких температурах:
3Li2 O + 2Al
6Li + Al2 O3 ,
4NaCl + 3CaO + Si
4Na + 2CaCl2 + CaSiO3 .
Свойства : Щелочные металлы - очень сильные восстановители. Они энергично реагируют с большинством неметаллов, разлагают воду и бурно взаимодествуют с кислотами. В общем виде (обозначая атом щелочного металла просто Ме) эти реакции будут выглядеть так:
2Me + H2 = 2MeH (гидриды),
2Me + Г2 = 2MeГ (галогениды),
2Me + S = Me2 S (сульфиды),
3Me + P = Me3 P (фосфиды),
6Me + N2 = 2Me3 N (нитриды),
2Me + 2H2 O = 2MeOH + H2 .
Очень интересно - Реферат: Метан
Гидриды щелочных металлов реагируют с водой и кислородом:
MeH + H2 O = MeOH + H2 ,
2MeH + O2 = 2 MeOH.
Из солей щелочных металлов с галогенами гидролизуются только фториды:
MeF + H2 O = MeOH + HF.
Li используют в некоторых сплавах и для получения трития в термоядерном синтезе. Na и K применяют для получения Ti, Zr, Nb, Ta:
TiCl4 + 4Na = Ti + 4NaCl.
Li, Na, и K используют в реакциях органического синтезах. Na эффективен при осушке органических растворителей. Сs применяется для изготовления фотоэлементов, так как у его атомов самое малое значение ПИ из всех химических элементов.
Оксиды и пероксиды щелочных металлов
Атомы щелочных металлов (Ме) в соединениях одновалентны. Поэтому общая формула оксидов - Me2 O, пероксидов - Me2 O2 . Приведем перечень всех соединений щелочных металлов с кислородом:
- Li2 O,
- Na2 O, Na2 O2 (пероксид),
- K2 O, K2 O2 (пероксид), KO2 (надпероксид), KO3 (озонид),
- Rb2 O, Rb2 O2 (пероксид), RbO2 (надпероксид),
- Cs2 O, Cs2 O2 (пероксид), CsO2 (надпероксид).
Вам будет интересно - Реферат: Метатезис, димеризация и олигомеризация олефинов
Литий не образует пероксидов, у Na - один пероксид, у K, Rb и Cs есть надпероксиды типа MeO2 , у калия известен озонид. Все это надо учитывать при изучении взаимодействия щелочных металлов с кислородом и озоном:
4 Li + O2
2 Li2 O,
2 Na + O2
Na2 O2 ,
K + O2 = KO2 .
Оксиды щелочных металлов можно получить из надпероксидов:
2МеO2
Ме2 O2 + О2
и пероксидов:
Ме2 O2 + 2Ме
2 Ме2 O.
Li2 О обычно получают при нагревании его карбоната:
Li2 CO3
Li2 O + CO2 .
Оксиды щелочных металлов, растворяясь в воде, дают щелочи:
Ме2 O + H2 O = 2 МеOH.
Похожий материал - Курсовая работа: Методи синтезу хінолінів
Пероксиды и надпероксиды также реагируют с водой:
Ме2 O2 + 2 H2 O = 2 МеOH + H2 O2 ,
2 МеO2 + 2 H2 O = 2 МеOH + H2 O2 + O2 ,
с кислотными оксидами и кислотами:
Me2 O + SO3 = Me2 SO4 ,
Me2 O + 2HNO3 = 2MeNO3 + H2 O,
Me2 O2 + H2 SO4 = Me2 SO4 + H2 O2 ,
4MeO2 + 2CO2 = 2Me2 CO3 + 3O2 .
Пероксиды и надпероксиды являются сильными окислителями:
Me2 O2 + 2FeSO4 + 2H2 SO4 ® Fe2 (SO4 )3 + Me2 SO4 + 2H2 O,
но могут и сами окисляться:
5Me2 O2 + 2KMnO4 +8H2 SO4 ® 2MnSO4 + 5Me2 SO4 + K2 SO4 + 8H2 O + 5O2 .