Реферат: Динамика вращательного движения твердого тела

Введение

1. Теоретические основы

2. Методические рекомендации по решению задач

3. Классическиепримеры решения некоторых типовых задач

Заключение

Возможно вы искали - Реферат: Динамика материальной точки

Список литературы

ВВЕДЕНИЕ

Решение конкретных физических задач является необходимой практической основой при изучении курса физики. Оно способствует приобщению студентов к самостоятельной творческой работе, учит анализировать изучаемые явления, выделять главные факторы, обуславливающие то или иное явление.

Основная цель практических занятий состоит в том, чтобы научить школьников и студентов самостоятельно использовать физические закономерности и математический аппарат при решении физических и технических задач.

При подготовке к практическим занятиям по курсу общей физики студенты младших курсов технических вузов сталкиваются со слабой методической базой при решении физических и технических задач, с неумением выявлять условия применимости физических законов и положений.


1. Теоретические основы

Момент силы

Похожий материал - Реферат: Енергетика як учасник водогосподарського комплексу

1. Момент силы относительно оси вращения , (1.1) где – проекция силы на плоскость, перпендикулярную оси вращения, – плечо силы (кратчайшее расстояние от оси вращения до линии действия силы).

2. Момент силы относительно неподвижной точки О (начала координат) . (1.2) Определяется векторным произведением радиуса-вектора , проведенного из точки О в точку приложения силы , на эту силу; – псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к («правило буравчика»). Модуль момента силы , (1.3) где – угол между векторами и , – плечо силы, кратчайшее расстояние между линией действия силы и точкой приложения силы.

Момент импульса

1. Момент импульса тела, вращающего относительно оси , (1.4) где – момент инерции тела, – угловая скорость. Момент импульса системы из тел есть векторная сумма моментов импульсов всех тел системы: . (1.5)

2. Момент импульса материальной точки с импульсом относительно неподвижной точки О (начала координат) . (1.6) Определяется векторным произведением радиуса-вектора , проведенного из точки О в материальную точку, на вектор импульса ; – псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к («правило буравчика»). Модуль вектора момента импульса , (1.7) где – угол между векторами и , – плечо вектора относительно точки О.

Очень интересно - Научная работа: Енергозбереження в електроприводах насосних агрегатів (на прикладі ВАТ "Полтававодоканал")

Момент инерции относительно оси вращения

1. Момент инерции материальной точки , (1.8) где – масса точки, – расстояние её от оси вращения.

2. Момент инерции дискретного твердого тела , (1.9) где – элемент массы твердого тела; – расстояние этого элемента от оси вращения; – число элементов тела.

3. Момент инерции в случае непрерывного распределения массы (сплошного твердого тела) . (1.10) Если тело однородно, т.е. его плотность одинакова по всему объему, то используется выражение (1.11), где и объем тела.

4. Теорема Штейнера. Момент инерции тела любой оси вращения равен моменту его инерции относительно параллельной оси, проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между ними . (1.12)

Вам будет интересно - Курсовая работа: Измерение вязкости

Основной закон динамики вращательного движения твердого тела относительно неподвижной оси

1. , (1.13) где – момент силы, – момент инерции тела, – угловая скорость, – момент импульса.

2. В случае постоянного момента инерции тела – , (1.14) где угловое ускорение.

3. В случае постоянных момента силы и момента инерции изменение момента импульса вращающегося тела, равно произведению среднего момента сил, действующего на тело на время действия этого момента . (1.15)

2. Методические рекомендации по решению задач

В задачах по курсу общей физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае все векторные величины, характеризующие вращательное движение тела: направлены вдоль оси вращения, что позволяет сразу переходить к алгебраической (скалярной) записи соответствующих уравнений. Некоторое направление вращения выбирается за положительное, используя, например, направление поступательного движения правого винта (правило буравчика), когда вращение его головки совпадает с направлением вращения твердого тела; естественно, перед величинами, вектора которых антинаправлены положительному направлению, будут использованы знаки «минус». При ускоренном вращении тела знаки всех четырех величин совпадают; при замедленном движении две пары величин и имеют противоположные знаки.

Похожий материал - Учебное пособие: Квантово-механічна теорія будови речовини

Момент силы , действующей на тело, относительно оси вращения определяется по формуле (1.1, раздел 1.1).

Момент импульса тела, вращающегося относительно неподвижной оси, определяется по формуле (1.4). Для определения момента импульса материальной точки с импульсом относительно начала координат используют выражение (1.6).

Для системы тел используют выражение (например, суммарный момент импульса гири массой , прикрепленной на шнуре к вращающемуся маховику радиусом , равен где момент импульса движущегося груза гири, линейная скорость гири и точек цилиндрической поверхности маховика; момент импульса, вращающегося с угловой скоростью и обладающего моментом инерции , маховика).

Момент инерции тела зависит в общем случае от его массы, расположения массы в теле, размеров и формы тела и положения оси вращения.