Контрольная работа: Экономика предприятия

СОДЕРЖАНИЕ

1. Задача №1 «Планирование производства»

2. Задача №3 «Транспортная задача»

3. Задача №4 «Назначение на работы»

4. Задача №2 «Планирование портфеля заказов»

Задача №1 «Планирование производства»

Возможно вы искали - Контрольная работа: Экономико-математическая задача по оптимизации рационов кормления

Небольшая фабрика выпускает два типа красок: для внутренних (I) и наружных (Е) работ.

Продукция обоих видов поступает в оптовую продажу. Для производства красок используются два исходных продукта А и В. Максимально возможные суточные запасы этих продуктов составляют 10 и 16 тонн, соответственно. Расходы продуктов А и В на 1 т соответствующих красок приведены в табл. 2.1.

Таблица 2.1

Исходные данные задачи о планировании производства красок

Исходный продукт

Расход исходных продуктов
на 1 т краски, т

Максимально возможный запас, т

краска Е

краска І

А

В

1

2

2

4

10

16

Минимальный суточный спрос на краску для внутренних работ составляет 1 т, а для внешних работ 2 т. Суточный спрос на краску i никогда не превышает спроса на краску Е более чем на 1 т. Кроме того, установлено, что спрос на краску I никогда не превышает 2 т в сутки. Оптовые цены одной тонны красок равны: 3000 руб. для краски Е и 2000 руб. для краски I .

Похожий материал - Дипломная работа: Экономико-математическая модель оптимизации распределения трудовых ресурсов

Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации продукции был максимальным?

В нашем случае фабрике необходимо спланировать объем производства красок так, чтобы максимизировать прибыль. Поэтому переменными являются:

Хi — суточный объем производства краски I и Хе — суточный объем производства краски Е .

Суммарная суточная прибыль от производства Xi краски I и Xe краски Е равна

Z = 3000*Хe+ 2000*Xi (2.1)

Очень интересно - Контрольная работа: Экономико-математические методы

Целью фабрики является определение среди всех допустимых значений Xi и Xe таких, которые максимизируют суммарную прибыль, т. е, целевую функцию Z.

Перейдем к ограничениям, которые налагаются на Xe и Xi. Объем производства красок не может быть отрицательным, следовательно:

Хt, Хi > 0 (2.2)

Расход исходного продукта для производства обоих видов красок не может превосходить максимально возможный запас данного исходного продукта, следовательно:

Хe + 2Xi <= 10 (2.3)

Вам будет интересно - Контрольная работа: Экономико-математические методы

2Xe + Xi <= 16 (2.4)

Кроме того, ограничения на величину спроса на краски таковы:

Xi-Xe <= 1 (2.5)

Xi < 2 (2.6)

Таким образом, математическая модель данной задачи имеет следующий вид:

Похожий материал - Контрольная работа: Экономико-математические методы и модели

максимизировать

Z= 300Хe + 2000Xi

при следующих ограничениях:

Xe+2Xi<= 10