Введение
Математическое моделирование процессов взаимодействия ионизирующего излучения с объектами сложной геометрии и внутренней структуры имеет важное значение во многих приложениях. В частности, в рамках задач рентгеновской диагностики материалов и конструкций требуется определить и исследовать рентгеновские изображения объектов, а при изучении электромагнитного воздействия проникающего излучения необходимо проанализировать распределение потоков релятивистских электронов, возникающих в результате взаимодействия ионизирующего излучения с материалами объектов.
Математическое моделирование процессов трансформации проникающего излучения в материалах объектов проводилось в большом количестве научных работ. В одних работах используются и развиваются сеточные методы решения уравнения переноса излучения. В других разрабатываются вычислительные алгоритмы, основанные на статистическом моделировании методом Монте-Карло процессов переноса и взаимодействия излучения с веществом. Преимущество метода Монте-Карло перед альтернативными методами, основанными на численном решении кинетического уравнения, определяется удобством и приспособленностью этого метода к решению сложных граничных задач в многокомпонентных средах.
1. Основная часть
В данной работе будет рассматриваться взаимодействие электронов с веществом.
Возможно вы искали - Реферат: Сварочные генераторы: общие сведения
Прохождение пучка эл-в с энергией Е0 через образец сопровождается многообразными явлениями, часть из которых схематично изображена на рис. 1.1.

Рис. 1.1. Основные процессы при взаимодействии с веществом
Среди них – прежде всего рассеяние и дифракция электронов, генерация рентгеновского излучения, фотонов низкой энергии и другие процессы. Интенсивность процесса характеризуется сечением процесса, обозначаемым σ и имеющим размерность. Если образец имеет толщину t, плотность атомов N, плотность ρ, и атомный вес A, то интенсивность процесса, скажем, рассеяния, будет
QТt = NtσT = N0σТρt/A,
Похожий материал - Реферат: Проблемы кавитации
где N0 – число Авогадро. Значок T означает интенсивность полного или интегрального сечения, в отличие от дифференциального, описывающего угловое распределение,
dσ/dΩ = (1/(2πsinθ)) dσ/dθ.
Вместо сечения, имеющего размерность площади, часто используют среднюю длину пробега между последовательными актами взаимодействия (mean free path), приводящими к наблюдаемому процессу
Λ = 1/Q = A/(N0σρ).
В данной работе стоит задача о рассеянии электронов, поэтому рассмотрим данный процесс более подробно.
Очень интересно - Контрольная работа: Переходные процессы при пуске и торможении трехфазного асинхронного двигателя
Для типичных толщин образцов (100 нм), большинство электронов проходят его не испытав рассеяния (unscattered electrons), либо испытав один акт столкновения (single scattering), кратное число (1<n<20) столкновений (plural scattering) или многократное (n>20) рассеяние (multiple scattering). Столкновения бывают упругими и неупругими.
Упругое рассеяние (elastically scattered electrons). Упругие столкновения – это такие, при которых энергия не расходуется на возбуждение атомов среды. Направление движения электрона может изменяться, но энергия практически не изменяется, т.е. Е ≈ Е0. Мы будем разделять упругое рассеяние на изолированном атоме и на системе атомов.
Упругое рассеяние на изолированном атоме. Проходя мимо атома на большом удалении от него, эл-н взаимодействует с эл-нами внешней оболочки и испытывает рассеяние на небольшой угол. Если же эл-н налетает на атом с малым прицельным параметром, то рассеяние может быть на большой угол, вплоть до 180º. С большой вероятностью электрон будет рассеян вперед, однако имеется малая вероятность рассеяния на большой угол (>90º). Упругое рассеяние на малые углы обычно вызвано рассеянием на электронах, а на большие углы – на ядрах.
Обратнорассеянные эл-ны имеют энергию, близкую к начальной и несут информацию о поверхности. Поскольку рассеяние никогда не является истинно упругим (как минимум, эл-н испускает тормозное излучение), то разделение на упругое и неупругое рассеяние является достаточно условным.
Сечение упругого рассеяния описывается формулой Резерфорда:
Вам будет интересно - Курсовая работа: Біполярні транзистори
dσ(θ)/dΩ = e4Z2/[16E02sin4 (θ/2)]
Проинтегрировав по углу от 0 до π, для интегрального сечения будем иметь: σn = 1.62 10–24 (Z/E0) 2cot2 (θ/2).
Здесь сечение не учитывает электронную экранировку заряда ядра. Помимо этого, оно для нерелятивистских скоростей. Экранировку учитывают введением параметра Бора a0=4πħ2ε0/(m0e2)= 0.0529 нм, где ε0 – диэлектрическая константа, и введением поправки на экранирование.
Релятивизм эл-в учитывают введением соответствующей поправки для длины волны электрона
λ = 2πħ/{2m0E0 [1+E0/(2m0c2)]}1/2
Похожий материал - Доклад: Вечный и магнитный двигатели
В результате для дифференциального сечения получаем
dσ(θ)/dΩ=λ4 Z2/{64π4 (a0) 2 [sin2 (θ/2)+(θ0/2)2]2
Это т.н. экранированная релятивистская формула Резерфорда, хорошо работающая до энергий 300–400 кэВ и для Z<30. Важно помнить, что сечение рассеяния (σ, Q) эл-нов уменьшается с ростом энергии Е0.
Упругое рассеяние на системе атомов в отличие от классического корпускулярного подхода, описывается в рамках волнового механизма взаимодействия. Формула Резерфорда, даже с поправками на экранировку и релятивизм не могут точно описать процесс рассеяния, поскольку она игнорирует волновую природу электронов.