Курсовая работа: Решение задач с нормальными законами в системе "Статистика"

Введение

1. Дискриминантный анализ как раздел многомерного статистического анализа

1.1 Методы классификации с обучением

1.2 Линейный дискриминантный анализ

2. Дискриминантный анализ при нормальном законе распределения показателей

3. Примеры решения задач дискриминантным анализом

Возможно вы искали - Курсовая работа: Экономико-статистический анализ цен

3.1 Применение дискриминантного анализа при наличии двух обучающих выборок

3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA

Заключение

Список использованных источников


ВВЕДЕНИЕ

Метод дискриминантного анализа впервые был применен в сфере банковской деятельности, а именно - в кредитном анализе. Здесь наиболее четко прослеживается основной подход метода, подразумевающий привлечение прошлого опыта: необходимо определить, чем отличаются заемщики, вернувшие в срок кредит, от тех, кто этого не сделал. Полученная информация должна быть использована при решении судьбы новых заемщиков. Иначе говоря, применение метода имеет цель: построение модели, предсказывающей, к какой из групп относятся данные потребители, исходя из набора предсказывающих переменных (предикторов), измеренных в интервальной шкале. Дискриминатный анализ связан со строгими предположениями относительно предикторов: для каждой группы они должны иметь многомерное нормальное распределение с идентичными ковариационными матрицами.

Похожий материал - Реферат: Необхідні умови оптимальності. Принцип максимуму Понтрягіна

Основные положения дискриминантного анализа легко понять из представления исследуемой области, как состоящей из отдельных совокупностей, каждая из которых характеризуется переменными с многомерным нормальным распределением. Дискриминантный анализ пытается найти линейные комбинации таких показателей, которые наилучшим образом разделяют представленные совокупности.

При использовании метода дискриминантного анализа главным показателем является точность классификации, и этот показатель можно легко определить, оценив долю правильно классифицированных при помощи прогностического уравнения наблюдений. Если исследователь работает с достаточно большой выборкой, применяется следующий подход: выполняется анализ по части данных (например, по половине), а затем прогностическое уравнение применяется для классификации наблюдений во второй половине данных. Точность прогноза оценивается, т.е. происходит перекрестная верификация. В дискриминантном анализе существуют методы пошагового отбора переменных, помогающие осуществить выбор предсказывающих переменных.

Итак, целью дискриминантного анализа является получение прогностического уравнения, которое можно будет использовать для предсказания будущего поведения потребителей. Например, в отношении клиентов банка существует необходимость на основе некоторого набора переменных (возраст, годовой доход, семейное положение и т.п.) уметь относить их к одной из нескольких взаимоисключающих групп с большими или меньшими рисками не возврата кредита. Исследователь располагает некоторыми статистическими данными (значениями переменных) в отношении лиц, принадлежность которых к определенной группе уже известна. В примере с банком эти данные будут содержать статистику по уже предоставленным кредитам с информацией о том, вернул ли заемщик кредит или нет. Необходимо определить переменные, которые имеют существенное значение для разделения наблюдений на группы, и разработать алгоритм для отнесения новых клиентов к той или иной группе.


1. ДИСКРИМИНАНТНЫЙ АНАЛИЗ

1.1 Методы классификации с обучением

Дискриминантный анализ является разделом многомерного статистического анализа, который включает в себя методы классификации многомерных наблюдений по принципу максимального сходства при наличии обучающих признаков.

В дискриминантном анализе формулируется правило, по которому объекты подмножества подлежащего классификации относятся к одному из уже существующих (обучающих) подмножеств (классов). На основе сравнения величины дискриминантной функции классифицируемого объекта, рассчитанной по дискриминантным переменным, с некоторой константой дискриминации.

Очень интересно - Контрольная работа: Методика эксперимента и расчет технологического режима получения антифрикционного покрытия

В общем случае задача различения (дискриминации) формулируется следующим образом. Пусть результатом наблюдения над объектом является реализация k - мерного случайного вектора . Требуется установить правило, согласно которому по наблюденному значению вектора х объект относят к одной из возможных совокупностей . Для построения правила дискриминации все выборочное пространство R значений вектора х разбивается на области так, что при попадании х в объект относят к совокупности .

Правило дискриминации выбирается в соответствии с определенным принципом оптимальности на основе априорной информации о совокупностях извлечения объекта из . При этом следует учитывать размер убытка от неправильной дискриминации. Априорная информация может быть представлена как в Виде некоторых сведений о функции мерного распределения признаков в каждой совокупности, так и в виде выборок из этих совокупностей. Априорные вероятности могут быть либо заданы, либо нет. Очевидно, что рекомендации будут тем точнее, чем полнее исходная информация.

С точки зрения применения дискриминантного анализа наиболее важной является ситуация, когда исходная информация о распределении представлена выборками из них. В этом случае задача дискриминации ставится следующим образом.

Пусть выборка из совокупности , причем каждый - й объект выборки представлен k – мерным вектором параметров . Произведено дополнительное наблюдение над объектом, принадлежащим одной из совокупностей . Требуется построить правило отнесения наблюдения х к одной из этих совокупностей.

Обычно в задаче различения переходят от вектора признаков, хapaктeризующих объект, к линейной функции от них, дискриминантной функции гиперплоскости, наилучшим образом разделяющей совокупность выборочных точек.

Вам будет интересно - Курсовая работа: Моделирование работы сборочного конвейера предприятия

Наиболее изучен случай, когда известно, что распределение векторов признаков в каждой совокупности нормально, но нет информации о параметрах этих распределений. Здесь естественно заменить неизвестные параметры распределения в дискриминантной функции их наилучшими оценками. Правило дискриминации можно основывать на отношении правдоподобия.

Непараметрические методы дискриминации не требуют знаний о точном функциональном виде распределений и позволяют решать задачи дискриминации на основе незначительной априорной информации о совокупностях, что особенно ценно для практических применений.

В параметрических методах эти точки используются для оценки параметров статистических функций распределения. В параметрических методах построения функции, как правило, используется нормальное распределение.

1.2 Линейный дискриминантный анализ

Выдвигаются предположения:

1) имеются разные классы объектов;

Похожий материал - Курсовая работа: Математическое моделирование процесса получения эмульгатора

2) каждый класс имеет нормальную функцию плотности от k переменных

;

, (1.1)

rде µ (i) - вектор математических ожиданий переменных размерности k;

- ковариационная матрица при n=n;

- обратная матрица.