Содержание
Введение
Постановка задачи
Проектирование программного модуля
Тестирование программного модуля
Возможно вы искали - Дипломная работа: Создание книжного электронного магазина
Заключение
Список использованных источников
Введение
Целью данной курсовой работы является разработка программного модуля для вычисления интеграла
по формуле трапеции и Симпсона с заданной точностью
, определяя шаг интегрирования по оценке остаточного члена. Для разработки используется табличный процессор Excel и язык программирования Visual Basic for Application.
Данная курсовая работа состоит из 4 разделов.
В разделе «Постановка задачи» описаны: математическая модель задачи, входные и выходные данные, обработка ошибок, которые могут быть допущены при работе с данной программой.
Похожий материал - Дипломная работа: Модернизация электронного учебно-методического комплекса
В разделе «Проектирование программного модуля» приведена структурная диаграмма программного модуля, схема программного модуля с ее описанием и описан пользовательский интерфейс.
В разделе «Реализация программного модуля» находится код программы с комментариями к нему и описаны используемые операторы и функции.
В разделе «Тестирование программного модуля» показана работа программы.
1. Постановка задачи
1.1 Математическая модель задачи
Пусть требуется вычислить интеграл
, где f(x) - непрерывная функция. Для простоты рассуждений ограничимся случаем, когда f(x)³ 0. Разобьем отрезок [a, b] на n отрезков точками a=x0 <x1 <x2 <...<xk-1 <xk <...<xn =b и с помощью прямых х=хk построим n прямолинейных трапеций (эти трапеции заштрихованы на рис. 1). Сумма площадей трапеций приближенно равна площади криволинейной трапеции, т.е.
Где f(xk-1 ) и f(xk ) - соответственно основания трапеций; xk - xk-1 = (b-a)/n - их высоты.
Очень интересно - Дипломная работа: Тестова система визначення коефіцієнта інтелекту
Таким образом, получена приближенная формула
которая и называется формулой трапеций. Эта формула тем точнее, чем больше n.
Разделим отрезок [a, b] на четное число равных частей n=2m. Площадь криволинейной трапеции соответствующей первым двум отрезкам [x0 x1 ] и [x1 x2 ] и ограниченной заданной кривой y=f(x) заменим площадью криволинейной трапеции которая ограничена параболой второй степени проходящей через три точки M(x0 y0 ) M1 (x1 y1 ) M2 (x2 y2 ) и имеющей ось параллельную оси Oy. Такую криволинейную трапецию будем называть параболической трапецией.
Уравнение параболы с осью параллельной оси Oy имеет вид
Вам будет интересно - Реферат: Управління розвитком інформаційних технологій в організаціях
Коэффициенты A, Bи C однозначно определяются из условия что парабола проходит через три заданные точки. Аналогичные параболы строим и для других пар отрезков. Сумма площадей параболических трапеций и даст приближенное значение интеграла.
Вычислим сначала площадь одной параболической трапеции.
Лемма: Если криволинейная трапеция ограничена параболой
осью Ох и двумя ординатами расстояние между которыми равно 2h то ее площадь равна
Похожий материал - Реферат: Тенденції застосування інформаційних технологій
(1)
где y0 и y2 – крайние ординаты а y1 – ордината кривой в середине отрезка.
Доказательство: Расположим вспомогательную систему координат так как показано на рисунке
Коэффициенты в уравнении параболы
определяются из следующих уравнений:
