1. ХИМИЯ НА РУБЕЖЕ ВЕКОВ — СВЕРШЕНИЕ И ПРОГНОЗЫ
Химия как фундаментальная наука окончательно сформировалась лишь в начале ХХ века, когда три главных постулата квантовой механики
— уравнение Шредингера, как квантовый наследник уравнения классической механики (уравнение Гамильтона-Якоби);
— принцип Паули, организующий электроны по спиновым состояниям и энергетическим уровням;
— волновая функция – носитель информации о плотности распределения заряда и спина составили надежный и прочный фундамент физический химии. Именно они наполнили физическим содержанием периодическую систему элементов Д.И. Менделеева – величайшее открытие прошлого века, значение которого вышло далеко за рамки химии. С позиции этих трех постулатов химическую реакцию следует рассматривать как физический процесс перестройки электронных оболочек и перегруппировки ядер.
Понимание и осознание значимости этих трех принципов делает химическую науку ясной и предсказуемой в главном: из них рождается все ее богатство, многообразие, стройная, изящная логика и красота.
Двадцатое столетие сделало химию точной наукой: установлено множество количественных закономерностей, точных законов, достигнут высочайший метрологический уровень определения атомно-молекулярных, термодинамических и кинетических констант, характеризующих вещество и химический процесс.
За этот век химия превратилась в разветвленную науку. Сегодня многие ее области существуют как самостоятельные: аналитическая химия, неорганическая химия, физическая химия, органическая химия, радиохимия, биохимия, геохимия, электрохимия и т.д. Каждая из них имеет собственный предмет и собственную область исследования, свои проблемы, свои экспериментальные методы. Но к 80-м годам 20-го столетия на смену профессиональным «дроблениям» химии пришло осознание необходимости совместного решения общих фундаментальных проблем химической науки.
Возможно вы искали - Реферат: Расчёт ректификационной колонны 6непрерывного действия для разделения бинарной смеси бензол - у
Определение таких интерграционных проблем представляется чрезвычайно важным делом – это позволяет четко сформулировать основные направления поиска, сделать его сосредоточенным, осмысленным и, следовательно, более конкретным, результативным, экономичным.
Первая попытка определить эти главные, «интеграционные» направления в химии, была предпринята Легасовым В.А., Бучаченко А.Л..
Этими авторами дана классификация химии на новом уровне. Это структурирование химии не по названиям разных «химий», число которых уже далеко превзошло четыре десятка; а структурирование химии по задачам и целям, по ее внутренней логике, которая не разделяет химию на «химиче4 ские губернии», а организует ее как единую науку, объединяет химиков в единое сообщество.
Сегодня, в начале ХХI века, иерархия общих проблем химии может быть представлена в следующем виде:
— искусство химического синтеза;
— химическая структура и функция;
— управление химическими процессами;
— химическое материаловедение;
— химическая технология;
— химическая энергетика;
— химическая аналитика и диагностика;
— химия жизни.
Это главные стратегические направления современной химии, по которым она развивается. Они отражают ее движение и ее прогресс. Содержания этих направлений можно сформулировать следующим образом: · Химический синтез – ключевое направление химии, источник всех ее сокровищ. Это направление делает ее самой созидательной наукой. Химия поставляет материалы для всех отраслей науки и производства, и в этом смысле можно сказать, что она стоит в центре естественных наук. Особую важность вносит то обстоятельство, что наряду с научными принципами химического синтеза здесь остается простор для игры ума и интуиции. Это сближает химический синтез с искусством.
Похожий материал - Курсовая работа: Ректификационная установка непрерывного действия для разделения смеси ацетон-бензол
· Атомно-молекулярная структура (архитектура) и электронное строение вновь синтезированных соединений бесконечно разнообразны. Настолько же разнообразны и физические, и химические свойства, и, следовательно, их функции. Установление связи между структурой вещества и его функциональным поведением составляет предмет второго направления.
· Управление химическими процессами, их молекулярными механизмами, использование химических факторов (комплексообразования, сольватации, молекулярной организации, катализа) и физических воздействий (от света до механики) для регулирования химических процессов – таково содержание третьего направления.
· Вещество – это не материал, а лишь его предшественник. Надо научить вещество работать как материал, определить его характеристики и границы применимости – это задача химического материаловедения.
· Задача химической технологии – разработка технологического процесса, его оптимизация и масштабирование, обеспечение малых энергозатрат, высокой безопасности и экологической чистоты.
· Разработка высокоэффективных способов преобразования химической энергии в другие виды энергии, накапливание энергии в энергоемких веществах и материалах (включая лазеры с химической и солнечной накачкой), преобразование солнечной энергии, химические источники тока, со5 пряжение энергопроизводящих и энергозатратных процессов – все это составляет предмет химической энергетики.
Очень интересно - Дипломная работа: Определение оптимальных рабочих параметров процесса экстрактивной ректификации смеси ацетон-хлороформ
· Прогресс химического материаловедения и химической технологии невозможен без надежной химической аналитики и диагностики. Это бурно развивающееся направление (включающее химическую сенсорику и химию запаха) с огромными техническими «выходами» во все области – от систем техногенного контроля до медицины и экологии.
Нет нужды доказывать, что все эти направления связаны не только логикой. Их внутренне объединяет сама методология химического исследования: в хорошей научной работе можно найти элементы нескольких направлений. И это великолепное сочетание дифференциации и интеграции результативный и созидательный стиль современной химии.
· Наконец, химия живого – это гигантская химическая галактика, которую еще предстоит осваивать.
На нее работают биохимия и химия природных веществ, фитохимия, наука о ферментах, медицинская и фармацевтическая химия, генная инженерия, биотехнология и многие другие. Это направление с ярко выраженными ожиданиями, гигантским потенциалом, бесспорными перспективами и огромным будущим; его контуры и масштабы уже сегодня просматриваются в трансгенной технологии.
2 ХИМИЧЕСКАЯ СТРУКТУРА И ФУНКЦИЯ
Вам будет интересно - Курсовая работа: Абсорбция сероводорода
К настоящему времени известно около 8 миллионов химических соединений, и их число продолжает бурно расти. Атомно-молекулярная архитектура и электронная структура этих соединений (выделенных из природного сырья или синтезированных) бесконечно разнообразны, настолько разнообразны их физические и химические свойства и, следовательно, их функции.
Известно, что для отбора одного вещества с заданными свойствами и назначением (т.е. с заданной функцией) необходимо в среднем испытать от 3 до 10 000 соединений. Настолько низок коэффициент полезного действия грандиозного труда, который сопровождает процесс превращения созданного вещества в вещество используемое, поставленное на службу человечества и цивилизации. Связь между электронной структурой вещества или материала его функциональным поведением – проблема фундаментальной важности.
Решение ее открыло бы умение предсказывать свойства, функцию и назначение вещества по его электронной структуре. В действительности, еще более важной является обратная задача: решить, каким должно быть вещество, какой должна быть его молекулярная архитектура и электронная структура, чтобы обеспечить заданный комплекс свойств и заданное функционирование.
В решении этих двух задач современная химия имеет определенные, хотя и скромные, успехи, достигнутые на основе богатого экспериментального и практического опыта. Можно довольно надежно предсказывать как зависит способность мономеров к полимеризации от их строения, прогнозировать основные типы химических реакций и реакционную способность различных функциональных химических групп, предсказывать изменение электрофизических свойств полупроводников при определенном изменении их структуры и т. д.
Ярким примером успешного поиска связи между структурой и функцией является синтез органических и металлорганических веществ – молекулярных металлов. Так, соединения Hg3-AsF6, синтезированные в 1971 году, обладают высокой проводимостью, характерной для металлов, а при низкой температуре – становятся сверхпроводниками. Химический анализ дает для этого вещества состав – Hg3AsF6, однако, из-за геометрической несоизмеримости составляющих атомов в кристаллической решетке создаются вакансии групп AsF6 , так что состав элементарной ячейки соответствует Hg3-.AsF6, где .=0,18. Молекулярная структура этого вещества необычна: она состоит из двух компонент – каркаса из анионных октаэдров AsF6 3— и катионных цепей атомов ртути, которые укладываются в каналах анионного каркаса вдоль главных осей а и в кристалла.
Похожий материал - Реферат: Краткая классификация специальных методов ректификационного разделения
Такая структура обеспечивает особые электропроводящие функции вещества. Цепи атомов ртути ведут себя как одномерный упорядоченный металл, обладающий высокой проводимостью. Это обстоятельство обеспечивает высокую электропроводность кристаллов вдоль этих цепей (т.е. вдоль 7 осей а и b) и низкую проводимость в перпендикулярном направлении (вдоль оси с). При понижении температуры включается взаимодействие между проводящими цепями – сначала между параллельными, а затем между перпендикулярными. Такое взаимодействие приводит к появлению сверхпроводимости при температуре ниже 4,1 К.
Установление связей в цепи структура-свойство-функция является научной основой химического материаловедения и имеет первостепенное значение при создании новых веществ и материалов: полимеров, люминофоров, материалов для полупроводниковой и лазерной техники, химических реагентов, катализаторов и т.д. Исключительное значение оно приобретает в биохимии и медицине, где структура лекарств, гормонов и других физиологически активных веществ определяет их функциональные эффекты в живом организме. Это огромная область, включающая такие крупные разделы как химия памяти и химия мышления, область малоизвестная, с огромными практическими и интеллектуальными перспективами.
Решать прямую задачу, т.е. устанавливать связь структура-функция, можно на двух уровнях: 1) на эмпирическом, который ограничивается простым установлением соответствия между структурой и функцией; 2) на неэмпирическом, когда подразумевается исследование и распознавание атомно-молекулярного механизма, с помощью которого данная структура выполняет свою функцию.
Однако современная химия уже в состоянии ставить и решать обратную задачу – создать структуру под заданную функцию.