ВВЕДЕНИЕ
Согласно современным требованиям природопользования, выполнение любой хозяйственной деятельности не должно приводить к необратимым нарушениям природной среды.
Производства каустической соды в связи с использованием ртутного метода долгое время являлось одним из наиболее агрессивным отраслям химической промышленности, оказывающих воздействие на окружающую среду. В наше время ртутный метод постепенно уходит из употребления и уступает место более прогрессивной мембранной технологии, основанной на применении мембран из перфторированных полимеров. Несмотря на это утилизация отходов производства каустической соды остается сложной проблемой для всех химических предприятий
В связи с этим целью курсового проекта является проектирование схемы утилизации отходов производства каустической соды, применение которой будет наиболее рациональным с точки зрения охраны окружающей среды.
Для достижения данной цели поставлены следующие задачи:
Возможно вы искали - Реферат: Биосфера как глобальная экосистема 2
-изучение существующих способов утилизации отходов производства каустической соды;
- разработка технологической схемы утилизации отходов производства каустической соды;
- подбор основного оборудования для проектируемой установки с расчетом основных параметров.
1 ПРОИЗВОДСТВО КАУСТИЧЕСКОЙ СОДЫ
Каустическая сода применяется в химической, нефтехимической, целлюлозно-бумажной, медицинской, пищевой промышленности, цветной металлургии, текстильной промышленности, в производстве вискозного шелка и отбеливании тканей, в анилинокрасочной промышленности, в мыловарении, в производстве алюминия и металлического натрия, растворимого стекла, щелочных аккумуляторов, в процессах водоподготовки и других областях народного хозяйства.
Похожий материал - Реферат: Почва в биосферном процессе
В химической промышленности сода каустическая используется для производства органических красителей, синтетического фенола, глицерина, инсектицидов, различных химикатов и полупродуктов, лекарственных средств, пластмасс и др., для очистки нефти, нефтепродуктов и минеральных масел. В черной металлургии применяется для удаления серы из стали, в целлюлозно-бумажной - для обработки целлюлозы, бумажной массы.
Существуют три основных способа получения гидроксида натрия или каустической соды:
- химический (известковый ), основанный на реакции карбоната
натрия с известью:
Na2 CO3 + Ca(OH)2 = NaOH + CaCO3 ↓
Очень интересно - Курсовая работа: Водно-экологический анализ водопользования города
- химический (ферритный), в основе которого лежат реакции образования и гидролиза феррита натрия:
Na2 CO3 + Fe2 O3 = 2 NaFeO2 + CO2 ,
NaFeO2 + 2 H2 O = Fe(OH)3 ↓ + NaOH
- электрохимический, основанный на электролизе растворов хлорида натрия и реализуемый в двух вариантах – электролиз с диафрагмой и электролиз с ртутным катодом. По первому варианту электролизу подвергают смесь NaOH и NaCl при соотношении 1 : 1, и в катодном пространстве получают щелочь и водород, а в анодном – кислоту и хлор. На одну тонну целевого продукта NaOH образуются и побочные - 0,89 т газообразного хлора и 312 м3 водорода. Второй вариант позволяет получить щелочь очень высокой чистоты, исключает образование водорода на катоде, но использование ртути сулит ему недолгую перспективу. Тем не менее относительная простота, возможность получить вместо раствора щелочи металлический натрий, да и рекуперация ртути (хотя и недостаточно полная), удешевляющая процесс, сделали этот метод основным в производстве каустической соды:
2 NaCl + 2 Hg → электролиз → Cl2 + 2 NaHg.
Вам будет интересно - Реферат: Природные ресурсы их роль в биологической и антропогенной деятельности
Когда количество натрия, растворяющегося в ртути достигает определенного предела, на катоде начинается выделение водорода. Это служит сигналом к остановке процесса, жидкую амальгаму сливают и направляют на растворение, при котором происходят образование щелочи, водорода и регенерация ртути:
2 NaHg + 2 H2 O = 2 NaOH + H2 ↑ + Hg↓
2 УТИЛИЗАЦИЯ ОТХОДОВ ПРОИЗВОДСТВА КАУСТИЧЕСКОЙ СОДЫ
2.1 Утилизация отходов производства каустической соды, не содержащие ртуть
Из анализа стадий производства соды следует, что наряду с целевым продуктом в нем образуются твердые и жидкие отходы. К твердым относятся осадки регенерации аммиака и очистки рассола, а также пережог и другие отходы обжига известняка. Жидкие отходы составляет так называемая дистиллерная жидкость (ДЖ) — остаточный раствор, точнее суспензия, стадии регенерации аммиака, содержащая СаС12 и NaCl в примерном соотношении 2:1.
Выход твердых отходов содового производства (ТОС) равен 200-250 кг, а дистиллерной жидкости 9-10 м /т соды. Их общий мировой объем превышает 300 млн м/г. Утилизация отходов незначительна, и они отправляются в обширные шламонакопители, получившие образное название «белых морей». В России накоплено более 40 млн т ТОС, их количество ежегодно увеличивается на 1 млн т. В частности, на предприятии «Сода» (г. Стерлитамак, Башкортостан), основном производителе каустической соды, шламонакопители занимают 500 га земли в пойме р. Белая и аккумулируют более 20 млн т отходов. На нем же ежегодно образуется около 17 млн м ДЖ. Твердые и жидкие отходы содержат карбонат кальция, гидроксид магния, хлориды кальция, натрия и магния.
Химический состав ТОС, %: 1,8 SiO2 ; 1,9 Al2 O3+Fe2 O3 ; 45,5 СаО, в том числе 1,6 СаО; 4,2 MgO. Средняя влажность ТОС составляет 44%. В высушенном состоянии он представляет собой светлосерый порошок, 80% которого слагают частицы размером 0,1-0,6 мм.
При в целом незначительной степени использования ТОС и ДЖ в мире, отметим основные направления их утилизации, реализованные на предприятии «Сода».
Похожий материал - Контрольная работа: Законодательство Республики Башкортостан в области экологического мониторинга
Наиболее перспективным для ТОС в настоящее время оказалось их применение для получения вяжущих и строительных материалов.
В начале 80-х гг. 20 в. был построен комплекс годовой мощностью 120 тыс. т по производству вяжущего известково-белитового типа. Его состав, %: 18,8 SiO2 ; 4,0 А12 О3 ; 1,34 Fe2 O3 ; 60,0 CaO; 4,6 MgO; 3,1 SO3 ; 8,5 CO2 ; 5,4 Cl..
Технология получения вяжущего основана на термообработке ТОС при 900-1100°С во вращающейся печи Е, сушке второго компонента (кварцевого песка), смешивании его и отхода в заданном соотношении в мешалке М, измельчении смеси до удельной поверхности 4000-5000 см/г с добавлением гипса в дробилке Д, интенсификатора помола и воды для частичной гидратации оксида кальция.
С использованием разработанного вяжущего на Стерлитамакском заводе строительных материалов организовано производство силикатного кирпича по автоклавной технологии. Силикатная смесь включает около 25% масс вяжущего, полученного из равных частей продукта обжига ТОС и молотого песка. Автоклавирванные изделия упрочняют по базовому заводскому режиму (давление пара 8 атм, длительность изотермической выдержки 8 ч). Марка кирпича составляет не менее 125, его морозостойкость не ниже 25 циклов.
На основе вяжущего налажен также выпуск 60 тыс м/год авто-клавированных стеновых блоков из ячеистого бетона. Построенные с их использованием для кладки наружных стен 1-4х-комнатные жилые дома, животноводческие и вспомогательные помещения спустя 15 лет находятся в удовлетворительном состоянии.
С применением ТОС освоено изготовление асфальто-минеральных и битумно-минеральных смесей. В них ТОС, с добавлением других минеральных компонентов (кварц, известь, зола ТЭЦ и т.п.), служит заполнителем. Выявлена долговечность этих асфальтобетонов: срок их службы увеличивается в среднем на 4 года.