Реферат: Изгиб бруса

Основнаязадачапервоготипа состоит в опре­делении компонент тензора поля напряжений внутри области , занятой телом, и компонент вектора перемещения точек внутри области и точек поверхности тела по заданным массовым силам и поверхностным силам

Искомые девять функций должны удовлетворять основным уравне­ниям (3) и (4), а также граничным условиям (6).

Основнаязадачавтороготипа состоит в опреде­лении перемещений точек внутри области и компонент тензо­ра поля напряжений по заданным массовым силам и по за­данным перемещениям на поверхности тела.

Искомые функции и должны удовлетворять основным уравнениям (3) и (4) и граничным условиям (7).

Заметим, что граничные условия (7) отражают требование о непре­рывности определяемых функций на границе тела, т. е. когда внутренняя точка стремится к некоторой точке поверхности , функция должна стремиться к заданному значению в данной точке поверхности.

Возможно вы искали - Реферат: Классификация тюркских языков

Основнаязадачатретьеготипа или смешан­наязадача состоит в том, что по заданным поверхностным си­лам на одной части поверхности тела и по заданным переме­щениям на другой части поверхности тела а также, вообще говоря, по заданным массовым силам требуется определить компо­ненты тензора напряжений и перемещения , удовлетво­ряющие основным уравнениям (3) и (4) при выполнении смешан­ных граничных условий (8).

Получив решение данной задачи, можно определить, в частности, усилия связей на , которые должны быть приложены в точках по­верхности , чтобы реализовать заданные перемещения на этой поверхности, а также можно вычислить перемещения то­чек поверхности .

§ 3. прямая и обратная задачи теории упругости

Различают две постановки задач теории упругости: прямую и обратную. Прямаязадача состоит в решении одной из основных задач указанных трех типов (см. § 2), т. е. в определении девяти функций и определяющих напряженно-деформированное сос­тояние тела в зависимости от внешнего воздействия на него.

Решение прямой задачи часто сопряжено с большими математи­ческими трудностями.

Похожий материал - Реферат: Натурфилософия. Милетская школа философии

Обратнаязадача состоит в том, что, задавшись либо пе­ремещениями как непрерывными функциями либо компонентами тензора напряжений, т. е. шестью функциями определяют из основных уравнений (1)—(4) и соответ­ствующих граничных условий все остальные функции, а также внешние силы, осуществляющие заданные перемещения или заданные функ­ции

Решение обратной задачи значительно проще, чем решение прямой задачи. Особенно просто решается обратная задача, если задаться перемещениями . При заданных непрерывных функциях дифференциальные зависимости Сен—Венана тождественно удовлетворяются и, следовательно, в этом случае они не используют­ся. Решение этой обратной задачи выполняется в следующем порядке: на основании формулы закона Гука (4) определяются компоненты тен­зора напряжений , соответствующие принятым функциям а из уравнений равновесия (3) и граничных условий (6) определяются внешние силы, при которых осуществляются заданные перемещения.

Если задаваться компонентами тензора напряжений , то решение обратной задачи будет несколько сложнее. В этом случае перемещения находятся интегрированием уравнений (1), что возможно, если компоненты тензора деформации , которые определяются формулой (5) закона Гука по принятым функциям ,, будут удовлетворять дифференциальным зависимостям Сен-Венана (2). Следовательно, компонентами тензора напряжений , надо задаваться так, чтобы выполнялись условия совместности (2). Это обстоятельство и осложняет решение данной обратной задачи. Но решение и этой обратной задачи для односвязной области проще, чем решение прямой задачи.

§ 4. полуобратный метод сен-венана

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциаль­ных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при реше­нии прямой задачи часто используют приближенные методы, например метод сеток, прямые методы вариационных задач (методы Ритца, Буб­нова—Галеркина, Канторовича и др.), а также получивший за пос­леднее время широкое применение метод конечных элементов. В неко­торых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.

Очень интересно - Реферат: Короткий нарис з історії хірургії

Сущность полуобратного метода Сен-Венана состоит в том, что при решении конкретной задачи, например, в напряжениях задаются из соображений физического характера задачи некоторыми компонен­тами тензора напряжений и затем определяют остальные компоненты ,,из уравнений равновесия (3) при выполнении условий сов­местности Бельтрами—Мичелла:

(9)

или (когда массовые силы постоянны или в частности равны 0)

(10)

и граничных условий (6).

Вам будет интересно - Курсовая работа: Краткосрочная финансовая политика 5

Может случиться, что сделанные предположения о значениях не­которых компонент тензора напряжений будут противоречить или уравнениям равновесия, или граничным условиям, или условиям совместности Бельтрами—Мичелла. В этих случаях следует сделать иные предположения о значениях части компонент , исходя, например, из известных решений аналогичных задач. В этом смыслеполуобратный метод Сен-Венана не является совершенным. Однако когда сделанные предположения о значениях некоторых компонент тензора напряжений или для некоторых компонент вектора перемещения, если задача решается в перемещениях, не противоречат всем основным уравнениям граничной задачи, то полученное решение полуобратным методом является точным и на основании теоремы о единственности однозначным.

Сен-Венан в 1855 применил полуобратный метод при решении за­дачи об упругом равновесиипризматического бруса произвольного по­перечного сечения, находящегося под действием поверхностной наг­рузки на его торцах. Эта задача, представляющая большой прак­тический интерес (кручение и изгиб призматического бруса), назы­вается задачей Сен - Венана.


ГЛАВА II

Изгиб прямых брусьев

§1. постановка задачи и основные уравнения

Похожий материал - Контрольная работа: Планирование на предприятии

Имеем брус постоянного поперечного сечения, ограниченного про­извольным контуром (рис. 2):

Рис. 2

Начало координат совместим с цент­ром тяжести закрепленного левого торца бруса, направив по его оси координатную ось а оси и — по главным осям поперечного се­чения так, чтобы система осей была правая. Длину бруса обоз­начим через .

Рассмотрим изгиб бруса силой , направленной параллельно оси к которой приводятся поверхностные силы на незакрепленном правом торце (. Предполагается, что массовые силы, а боковая поверхность бруса свободна от сил .

Задачу будем решать в напряжениях полуобратным методом Сен-Венана, т. е. сделав определенные предположения относительно значе­ний некоторых компонент тензора напряжений. Допустим, что