Электрическая схема цепи при прохождении тока через тело человека
тельно включенных сопротивлений: двух одинаковых сопротивлений эпидермиса (2Rн) и одного внутреннего сопротивления (Rв) включающего п себя среднее сопротивление всех внутренних органов, оказывающихся на пути тока.
Сопротивление наружного слоя кожи состоит из активного и емкостного сопротивлений, включенных параллельно.
Емкостное сопротивление обусловлено тем, что в месте соприкосновения токоведущего элемента с телом образуется как бы конденсатор Сн, обкладками которого являются проводник тока и внутреннее малое сопротивление тканей, между которыми находится эпидермис с высоким сопротивлением.
Емкость такого конденсатора
Сн = /d
где S - площадь контакта тела с проводником;
d - толщина эпидермиса;
0 = 8.85*10-12 Ф/м - электрическая постоянная;
= 100...200 - диэлектрическая проницаемость эпидермиса
Для сухой кожи рук Сн = 102 пФ... 10 мкФ.
2.12. Как влияет величина тока на исход поражения?
Основным 'фактором, обусловливающим исход поражения организма является сила тока. Человек начинает ощущать воздействие проходящего через него переменного тока величиной 0,6 - 1,5 мА, который называется пороговым ощутимым. При токе 10 - 15 мА человек не может оторвать рук от токоведущих частей, такой ток называется неотпускающим. Ток 50 мА поражает органы дыхания и сердечно-сосудистую систему. При силе тока 100 мА наступает фибриляиия сердца и, затем, его остановка. Ток > 5 А приводит к немедленной остановке сердца.
2.13. Как влияет длительность воздействия тока на исход поражения?
Чем продолжительнее действие тока, тем больше вероятность тяжелого или смертельного исхода, так как с увеличением времени за счет падения электросопротивления увеличивается сила тока. Кроме того, повышается вероятность совпадения момента прохождения тока через сердце с особенно уязвимой для тока фазой Т кардоцикла. Эта фаза заканчивается в расслабленное состояние, что повышает вероятность возникновения фибриляции.
2.14. Какое значение имеет путь прохождения тока через тело человека?
Особенно опасным является прохождение тока через жизненно важные органы: сердце, легкие, головной мозг. Наиболее характерные цепи тока: рука-нога, рука-рука, рука-туловище (соответственно 56,7; 12,2; 9,8 % травм с тяжелым исходом). Наимение опасным является путь от ноги к ноге.
2.15. Как влияет род и частота тока на исход поражения?
Постоянный ток в 4 - 5 раз безопаснее переменного частотой 50 Гц. Однако это справедливо только для относительно небольших напряжений (до 200 - 250 В). При напряжении 400 - 600 В опасность постоянного тока практически одинакова с переменным, а при напряжении > 600 В даже больше, чем при переменном.
С увеличением частоты от 0 до 50 Гц переменного тока полное сопротивление тела уменьшается, и величина тока возрастает. Дальнейшее повышение частоты приводит к снижению опасности поражения (электрического удара), которая практически исчезает При частоте 450 ~ 500 Гц. Однако сохраняется опасность ожогов.
2.16. Каковы предельно допустимые уровни тока и напряжения?
При, продолжительности воздействия тока Iс напряжении 36 В допустимая сила тока в нетоковедущих частях электроустановки не должна превышать 6 мА.
3. ОПАСНОСТЬ ПОРАЖЕНИЯ ТОКОМ В РАЗЛИЧНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ
Эта опасность оценивается величиной тока, протекающего через тело человека при прикосновении к токоведущим частям электроустановок.
Опасность поражения зависит от:
- схемы "включения" человека в электросеть;
- напряжения в сети;
- схемы самой электросети и режима ее нейтрали;
- степени изоляции токоведущих частей от земли.
3.11 Каковы возможные схемы "включения” человека в электрическую сеть?
Наиболее часто встречаются две схемы включения: между двумя фазами цепи и между фазой и землей.
Возможно также прикосновение к заземленным нетоковедущим частям оказавшимся под напряжением, и попадание человека под шаговое напряжение.
3.2. Что такое нейтраль трансформатора (генератора)?
Нейтраль - это точка соединения обмоток питающего цепь трансформатора или генератора. Нейтраль может быть изолированной или заземленной.
Заземленной называется нейтраль, присоединенная к заземляющему устройству, либо непосредственно, либо через малое сопротивление.
Изолированной называется нейтраль либо не присоединенная к заземляющему проводу, либо соединенная с ним через
большое сопротивление.
При напряжении до 1000 В применяются обе схемы трехфазных сетей: трехпроводная с изолированной нейтралью и четырехпроводная с заземленной нейтралью.
Технологически более выгодной является четырехпроводная сеть, позволяющая использовать два рабочих напряжения - линейное и фазовое, т.е. питать силовую нагрузку, включая ее как между фазами на линейное напряжение 380 В, так и между фазным и нулевым проводом на фазное напряжение 220 В.
При прикосновении к фазному проваду при нормальной .работе сети более безопасной является сеть с изолированной нейтралью, а в случае аварийной ситуации - с заземленной нейтралью. Поэтому сеть с изолированной нейтралью целесообразно применять в хорошо изолированных сетях.
В тех случаях, когда невозможно обеспечить хорошую изоляцию электроустановок, например из-за высокой влажности или агресивности окружающей среды, целесообразно применять сети с заземленной нейтралью.
3.3. Что такое напряжение прикосновения?
Это напряжение между двумя точками электроцепи, которых одновременно касается человек. Так для человека, стоящего на земле и касающегося оказавшегося под напряжением заземленного корпуса прибора или другой электроустановки, напряжение прикосновения численно равно разности потенциалов между корпусом и точкой касания земли.
Напряжение прикосновения увеличивается по мере удаления от заземляющего устройства.
3.4. Каковы предельно допустимые уровни тока и напряжения прикосновения?
Предельно допустимые уровни напряжения и тока установлены в соответствии с ГОСТ 12.1.038-82 (см. таблицу)
Предельно допустимые уровни U и I
Род тока | U, В | I, mА |
Переменный 50 Гц | <=2 | <=0.3 |
Переменный 400 Гц | <= 3 | <=0.4 |
Постоянный | <=8 | <=0.1 |
З.5 Что такое шаговое напряжение?
Это напряжение между двумя точками на земле на расстоянии шага, возникающее вокруг точки замыкания на землю токонесущей линии. Наибольшая величина этого напряжения наблюдается на расстоянии 80 - 100 см от точки касания провода с землей, затем оно быстро понижается и на расстоянии 20 м практически становится равным нулю.
3.6. Какова опасность двухфазного прикосновения?
Под двухфазным понимают одновременное прикосновение к двум фазам электролинии находящейся под напряжением (рис. 3.1). Такое прикосновение является наиболее опасным, так как ток, проходящий через тело по самому опасному
Рис. 3.1. Схема двухфазного прикосновения к сети переменного тока (фазы А, В, С)
пути (рука-рука), будет зависеть от приложенного линейного напряжения (Uл = 380 В) и от сопротивления тела человека (Rч ~ 1000 Ом):
I = U/R = 380 B/ 1000 Om = 380 mA
Такой ток смертельно опасен как в сети с изолированной, так и с заземленной нейтралью.
3.7. Чем характеризуется однофазное прикосновение?
Это прикосновение к одной фазе, при котором напряжение не превышает фазного (220 В), соответственно меньшим оказывается проходящий через тело человека ток. При этом на ток оказывает влияние режим нейтрали, сопротивление изоляции проводов сети, сопротивление поля, на котором стоит человек, сопротивление обуви и т.д.
Вместе с тем, однофазное прикосновение происходит во много раз чаще двухфазного.
3.8. В чем опасность однофазного сопротивления в сети с заземленной нейтралью?
В этом случае цепь тока, проходящего через тело (рис. 3.2), включает в себя сопротивление тела человека (Rч), его обуви (Rоб), пола (Rо)? а также сопротивление заземления нейтрали источника тока (Rо):
Iч = Uф/Rч + Rоб + Rп + Rо
В наиболее неблагоприятном случае когда Rп = 0 Rоб = О с учетом, что Rо<< Rч:
Iч = Uф/Rч = 220/1000 = 220 mA
Такой ток смертельно опасен. При использовании непроводящей обуви (резиновые галоши) и изолирующего покрытая пола (деревянное покрытие) сила тока существенно меньше:
Возможно вы искали - Реферат: Землетрясения
Iч = 220/1000 + 45000 + 100000 = 1,5 mA
3.9. Каковы особенности однофазного прикосновения в сети с изолированной нейтралью?
В такой сети (рис. 3.3) ток, проходящий через тело человека в земл1о возвращается к источнику тока через изоляцию проводов сети, которые (» исправном состоянии) обладают весьма большим сопротивлением (Rиз). В этом случае
Iч = Uф/Rч + Rоб + Rп + Rиз*1/3
В наиболее неблагоприятном случае, когда Rоб = 0 Rп = 0
Iч = Uф/ Rч + Rиз*1/3 = 220/1000+30000 = 7 mA
Такой ток не представляет смертельной опасности.
Рис. 3.3. Схема прикосновения к одной фазе трехфазной сети с изолированной нейтралью
4. ТЕХНИЧЕСКИЕ СПОСОБЫ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
4.1. Какие технические средства защиты применяются для обеспечения электробезопасности?
Отдельно или в сочетании друг с другом применяются следующие технические способы:
- защитное заземление;
- защитное зануление;
- защитное отключение;
- изоляция токоведущих частей (рабочая, дополнительная, усиленная, двойная);
- оградительные устройства.
Все эти способы и средства защиты должны применяться с учетом:
- номинального напряжения, рода и частоты тока;
- способа электроснабжения ( от стационарной сети или автономного источника питания);
- режима нейтрали (изолированная или заземленная);
- характеристики помещения по степени опасности;
- характера возможного прикосновения к элементам электроцепи.
4.2. Как выполняется защитное заземление?
Под заземлением понимается преднамеренное электрическое соединение с землей (или ее эквивалентом) нетоковедущих частей прибора или установки, которые могут оказаться под напряжением. Заземление защищает от поражения током при прикосновении к корпусу установки (или Другим нетоковедущим частям, которые оказались под напряжением).
Защитное заземление следует отличать от рабочего -преднамеренного соединения с землей отдельных точек электросети (нейтральной точки, фазового провода и т.д.), необходимого для работы определенной электрической схемы.
Суть защитного заземления заключается в том, что нетоковедушие части установки соединяются с заземляющим устройством через малое сопротивление, во много раз меньше, чем сопротивление тела человека. В случае замыкания на корпус основная часть тока проходит через землю, в то время как ток через тело оказывается весьма малым (рис. 4.1).
Рис. 4.1. Схема заземления электроприемника
4.3. Что представляет собой заземляющее устройство?
Заземляющим устройством называется совокупность заземляющих проводников и заземлителя. Заземлитель - это проводник большой площади (например пластина), находящийся в соприкосновении с землей и соединенный с заземляющими проводниками, контактирующими с заземляемой частью электроустановки.
Диаметр круглых пластинчатых заземлителей неоцинкованных и оцинкованных соответственно 10 и 6 мм. Сечение прямоугольных заземлителей 48 мм при толщине пластины >= 4 мм.
4.4. Какие части электроустановок подлежат обязательному заземлению?
Заземлению подлежат:
- корпуса электрических машин, трансформаторов, приборов, светильников;
- приводы электрических аппаратов;
- вторичные обмотки трансформаторов;
- каркасы распределительных щитов управления;
- кабельные соединительные муфты;
- металлические оболочки и броня силовых кабелей напряжением до 42 В переменного тока и до 110 В постоянного.
Для заземления электроустановок различных назначений территориально приближенных одна к другой рекомендуется применять одно заземляющее устройство.
4.5. В чем заключается основной недостаток защитного заземления?
Недостаток защитного заземления в том, что при замыкании на заземленный корпус в сети с изолированной нейтралью напряжение на нем сохраняется, как правило, длительное время.
4.6. В чем состоит сущность зануления электроустановок?
Зануление - это основная мера защиты от поражения током людей в случае прикосновения к корпусам электрооборудования и другим деталям, оказавшимся под напряжением из-за повреждения изоляции или однофазного короткого замыкания в сети с заземленной нейтралью.
Зануление заключается в преднамеренном соединении с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением (рис. 4.2).
Нулевым защитным проводником называется проводник, соединиющий зануляемые части с заземленной нейтралью источника тока. Такое соединение превращает всякое замыкание токоведущих частей на землю или на корпус в однофазное короткое замыкание, что приводит к срабатыванию механизма защитного отклонения.
Рис. 4.2. Схемазануления электроприемника:
Rо, Rн и Rф - сопротивление соответственно нейтрали, нулевого провода и фазного провода.
4.7. Каково основное различие между нулевым защитным проводником и нулевым рабочим проводником?
Нулевым рабочим проводником называется проводник, используемый для питания электроприемников, соединенный с заземленной нейтралью генератора (трансформатора) в сетях трехфазного тока с заземленным выводом источника однофазного тока.
Нулевые рабочие проводники длжны быть рассчитаны на длительное протекание рабочего тока.
4.8. В чем заключается принцип работы устройств автоматического отключения?
Эти устройства предназначены для быстрого отключения питающей электроцепи от электроустановки. По принципу действия они делятся на два типа: разового отключения и временного отключения.
К устройствам разового отключения относятся элементы, разрывающие питающую сеть без ее автоматического включения. Это плавкие предохранители и электромагнитные устройства, обеспечивающие контакт выключателя только при заданных режимах тока и напряжения. При срабатывании защиты контакт разрывается и самостоятельно не восстанавливается.
Вторая группа устройств (временного отключения) работает по принципу срабатывания отключения при аварийных ситуациях с последующем автоматическим замыканием контактов цепи при нормализации параметров тока и напряжения.
4.9. Каковы условия обеспечения автоматического отключения в сети с заземленной нейтралью?
На рис. 4.3 в качестве примера приведена наиболее простая схема защитного отключения, реагирующая на напряжение корпуса электроустановки относительно земли.
Похожий материал - Реферат: Классификация инцидентов на реакторных установках
% '—^
Рис. 4.3. Схема защитного отключения
Здесь датчиком служит реле напряжения Pз ? включенное между корпусом и вспомогательным заземлителем; Кз - замыкающие контакты;
R з, R н - вспомогательные заземления.
4.10 Как обеспечивается недоступность токоведущих частей для случайного прикосновения?
Недоступность токоведущих частей электроустановок обеспечивается их изоляцией, ограждениями, размещением на недоступной высоте и др. Оголенные провода и шипы должны быть ограждены специальными, сплошными или сетчатыми щитами высотой >= 1,7 м или размещаться на высоте 7 - 8 м от поля (для линий с напряжением > 1000 В и 3,5 - 5 м для линий с меньшим напряжением.
5. СРЕДСТВА И МЕРЫ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ
Средства защиты предназначены для предотвращения или уменьшения воздействия на человека опасных или вредных производственных факторов.
Существуют две категории: средства индивидуальной и средства коллективной защиты, предусмотренные ГОСТ 12.4.011 –75*
Средства защиты подразделяются на основные и дополнительные.
5.1. Что относится к основным индивидуальным электрозащитным средствам?
Основные средства защиты должны обеспечивать надежную изоляцию в течение длительного времени. К ним относятся:
- изолирующие штанги;
- изолирующие и электроизмерительные клещи;
- указатели напряжения;
- изолирующие лестницы.
5.2. Что относится к дополнительным индивидуальным средствам электрозащиты?
Дополнительными являются средства, не способные самостоятельно обеспечить защиту от поражения током, и применялся совместно с основными электрозащитными средствами.
К дополнительным средствам при напряжении рабочей цепи > 1000 В относятся:
- диэлектрические перчатки и боты;
- диэлектрические коврики;
- изолирующие подставки и накладки;
- переносные заземления;
- плакаты и знаки безопасности.
________________________________
* Описанные в разделе 4 техническис устройства защиты(заземление, зануление и гл.) в понятие средств защиты не входят.
5.3. Какие организационные меры принимаются для защиты от поражения током?
Меры защиты учитывают как индивидуальные качества человека, работающего с электрооборудованием, так и внешние условия работы. Организационные меры обеспечиваются руководством предприятия и контролируются профсоюзной организацией. Эти меры предусматривают обязательное обучение и специальные инструктажи работающих с электроустановками в соответствии с "Общими правилами устройства и Правилами технической эксплуатации электроустановок", а также "Оперативными инструкциями по технике безопасности" для конкретных условий работы.
В соответствии с этими нормативными документами работающим с электрооборудованием присваивается одна из пяти квалификационных групп.
5.4. Кому может быть присвоена квалификационная группа с I по V?
Группа I присваивается лицам, имеющим представление об опасности электрического тока и мерах электробезопасности, а также оказанию первой помощи пострадавшему.
Группа I присваивается не электротехническому персоналу (например студентам) после проверки знаний безопасных методов работы на низковольтных электроустановках под непосредственным руководством лиц с группой по электробезопасности не ниже III. Присвоение группы I офjрмляется в специальном журнале с подписью проверяющего и проверяемого.
Группа II присваивается лицам, имеющим минимальный стаж работы на электроустановках не менее двух месяцев. Для присвоения этой группы необходимо техническое ознакомление с электроустановками, практические навыки оказания первой помощи пострадавшим.
Группа III присваивается лицам, имеющим стаж работы с электроустановками не менее трех месяцев в группе II. Для этих лиц необходимо знакомство с устройством и правилами обслуживания, знание общих правил электробезопасности и конкретных мер ее обеспечения на своем рабочем месте, умение вести надзор за работающими под их руководством, умение оказывать первую доврачебную медицинскую помощь пострадавшим.
Ни I, ни II группы не дают права самостоятельной работы (или ремонтных работ).
Группа IV присваивается лицам с минимальным стажем работы с электрооборудованием не менее трех месяцев в группе III и имеющим среднее техническое образование, стаж работы на электроустановках 2 месяца в группе III.
Для присвоения IV категории необходимо знание: электротехники, правил техники безопасности (ПТБ) и правил электробезопасности (ПТЭ), электроустановок и их обслуживания, условий безопасной работы и ремонта, правил оказания первой помощи, умение обучать персонал низших групп ПТБ и ПТЭ.
V группа (высшая) присваивается лицам, ответственным за установки с напряжением > 1000 В. Стаж работы в предыдущей группе должен быть нс менее двенадцати месяцев для лиц, имеющих среднее образование и не менее трех месяцев для лиц, имеющих высшее техническое образование.
Для присвоения V квалификационной группы обязательно знание: элсктросхем и оборудования своего участка, ПТБ и ПТЭ, умение организовать безопасное проведение эксплуатационных и ремонтных работ на установках любого напряжения, умение обучить персонал ПТБ и ПТЭ и оказанию первой помощи пострадавшим.
5.5. Что принимается во внимание при оценке условий эксплуатации электроустановок?
Элсктробезопасность персонала в большей степени зависит от условий эксплуатации:
- особенностей окружающей среды (температура, в?