Реферат: Особливості математичних методів застосовуваних для вирішення економічних задач

Міністерство освіти України

Київський національний економічний університет

Кафедра вищої математики

Доповідь

Тема:”Особливості математичних методів, застосовуваних для вирішення економічних задач ”

Виконав: студент І-го курсу

Факультету ІСіТ

Солом’яний Максим Михайлович

Київ 2000

Особливості математичних методів, застосовуваних для вирішення економічних задач

У економічних дослідженнях здавна застосовувалися найпростіші математичні методи. У господарському житті широко використовуються геометричні формули. Так, площа ділянки поля визначається шляхом перемножування довжини на ширину або об’єм силосної траншеї - перемножуванням довжини на середню ширину і глибину. Існує цілий ряд формул і таблиць, що полегшують господарським працівникам визначення тих або інших розмірів.[5 (52)].

Нема що говорити про застосування арифметики, алгебри в економічних дослідженнях, це вже питання про культуру дослідження, кожний економіст, що шанує себе, володіє такими навиками. Особняком тут коштують так називані методи оптимізації, частіше називані як економіко-математичні методи.

У 60-ті роки нашого сторіччя розгорнулася дискусія про математичні методи в економіці. Наприклад, академік Немчинов виділяв п'ять базових методів дослідження при плануванні:

Возможно вы искали - Курсовая работа: Оптимізація транспортно-складських витрат при використанні розподільчого центру

1) балансовий метод;

2) метод математичного моделювання;

3) векторний-матричний метод;

4) метод економіко-математичних множників (оптимальних суспільних оцінок);

5) метод послідовного наближення.[9 (153)].

Похожий материал - Курсовая работа: Розробка програми розрахунку параметрів підшипника та швидкісної характеристики автомобіля

У той же час академік Канторович виділяв математичні методи в чотирьох групи:

- макроекономічні моделі, куди відносив балансовий метод і моделі попиту;

- моделі взаємодії економічних підрозділів (на основі теорії ігор);

- лінійне моделювання, включаючи ряд задач, що трохи відрізняються від класичного лінійного програмування;

І з тієї, і з іншій класифікацією можна сперечатися, оскільки, наприклад моделі попиту можна по ряді особливостей віднести до нелінійного програмування, а стохастичне моделювання іде коренями в теорію ігор. Але все це проблеми класифікації, що мають визначене методологічне значення, але в даному випадку не настільки важливі.

Очень интересно - Контрольная работа: Розрахунок основних параметрів підйомно-транспортних машин

З точки ж зору ролі математичних методів варто говорити лише про широту застосування різних методів у реальних процесах планування.

З цього погляду безсумнівним лідером є метод лінійної оптимізації, що був розроблений академіком Канторовичем у 30-ті роки ХХ-го століття. Частіше усього задача лінійного програмування застосовується при моделюванні організації виробництва. От як по Канторовичу виглядає математична модель організації виробництва:

У виробництві беруть участь M різних виробничих чинників (інгредієнтів) - робоча сила, сировина, матеріали, устаткування, кінцеві і проміжні продукти й ін. Виробництво використовує S технологічних способів виробництва, причому для кожного з них задані об'єми вироблених інгредієнтів, розраховані на реалізацію цього способу з одиничною ефективністю, тобто заданий вектор ak = (a1k, a2k,... , amk ), k = 1,2... ,S, у котрому кожна з компонент aik вказує об'єм виробництва відповідного ( i-го ) інгредієнта, якщо вона позитивна; і об'єм його витрати, якщо вона негативна ( у способі k ).

Вибір плану означає вказівка інтенсивностей використання різних технологічних способів, тобто план визначається вектором x = (x1, x2,... , x ) з невід’ємними компонентами [4 (32)].

Звичайно на кількості що випускаються і що затрачаються інгредієнтів накладаються обмеження: зробити потрібно не менше, ніж потрібно, а затрачати не більше, ніж є. Такі обмеження записуються у виді

Вам будет интересно - Реферат: 480-е до н. э.

s

S a ikxk > bi ; i=1,2,... ,m. (1)

k=1

Якщо i > 0, то нерівність означає, що є потреба в інгредієнті в розмірі i, якщо i < 0,то нерівність означає, що є ресурс даного інгредієнтів розмірі - i =: i:. Далі передбачається, що використання кожного способу, зв'язаного з витратою одного з перерахованих інгредієнтів або особо виділеного інгредієнта в кількості Ck при одиничній інтенсивності способу k. У якості цільовій функції приймається сумарна витрата цього інгредієнта в плані.

s

Похожий материал - Реферат: 460-е до н. э.

f(x) = S ckxk. (2)

k=1

Тепер загальна задача лінійного програмування може бути подана в математичній формі.

Для заданих чисел aik, ck, і bi найти