Реферат: Средние величины 3

Тема 5. СРЕДНИЕ ВЕЛИЧИНЫ

5.1. Понятие о средней величине

Средняя величина является обобщающей количественной характеристикой изучаемого признака в исследуемой совокупности. В статистике используются различного рода средние величины.

Средняя арифметическая – частное от деления суммы вариант на их число. Она бывает следующих видов: простая или взвешенная.

Средняя арифметическая простая, рассматривается в случае, когда известны все значения признаков х 1 , х 2 , ¼, хп и рассчитывается по формуле

Возможно вы искали - Доклад: Краснодарская улица Красная

где n – число вариант;

х – значение признака.

Средняя арифметическая взвешенная, исчисляется, если известны отдельные значения признаков и их частоты, по следующей формуле:

где х – значение признака;

f – частота, которая может быть абсолютной (в разах) и относительной (доля, удельный вес частот во всей совокупности) величиной.

Похожий материал - Реферат: Сейсмостойкое строительство

Средняя арифметическая имеет следующие свойства:

· произведение средней арифметической на сумму частот равно сумме произведений вариант на соответствующие им частоты;

· если все варианты уменьшить или увеличить на одно и то же постоянное число, то средняя арифметическая из этих вариант уменьшится или увеличится на то же самое число;

· если все варианты увеличить или уменьшить в одно и то же число раз, то средняя арифметическая увеличится или уменьшится во столько же раз;

· если все частоты одинаково увеличить или уменьшить в одно и то же число раз, то средняя арифметическая не изменится;

Очень интересно - Реферат: Строительство и реконструкция горных предприятий

· сумма отклонений вариант от их средней арифметической величины равна нулю.

Средняя гармоническая – это величина, обратная средней арифметической из обратных значений признака. Данный показатель применяется тогда, когда неизвестна численность совокупности и приходится взвешивать варианты по объемам признака. Средняя гармоническая также может быть простой и взвешенной.

Средняя гармоническая простая исчисляется по формуле

Средняя гармоническая взвешенная рассчитывается по следующей формуле:

где W = xf – вес средней гармонической.

Вам будет интересно - Реферат: Учет договоров на строительство 3

Средняя квадратиче ская (и т. д. для любой степени) рассчитывается по следующим формулам:

· простая:

· взвешенная:

Средняя геометрическая определяется по следующим формулам:

· простая: ,

Похожий материал - Реферат: Історія хімії

где Π – знак перемножения.

· взвешенная: .

Пример 1 . Имеются следующие данные о размере торговой площади магазинов, входящих в районное потребительское общество (табл. 9).

Таблица 9

Магазин

1-й

2-й

3-й

4-й

5-й

6-й

7-й

8-й

9-й

10-й

Площадь магазина, м2

60

100

80

60

60

80

80

80

100

100

Необходимо определить среднюю площадь магазина.