Реферат: Средние величины 3

Данные распределения магазинов по торговой площади представлены в виде интервального ряда распределения с равными интервалами (i = 20 м2 ), следовательно, расчет средней площади магазина можно провести по формуле , применив «способ моментов».

Первый и последний интервалы даны открытыми, т. е. не имеют границ нижней и верхней соответственно. Для определения среднего значения в них границы интервалов следует закрыть. Для первой группы с размером площади до 40 м2 условно считаем, что интервал также равен 20 м2 , затем вычитаем 20 м2 из 40 м2 и находим условную нижнюю границу первого интервала (20 – 40). Условную верхнюю границу последнего интервала определяем аналогично (100 – 120).

Расчеты следует проводить в табл. 15.

Таблица 15

Группировка мага-
зинов по торговой
площади, м2 (х )

Удельный вес
магазинов, % (f )

Середина
интервала (х )

хА

xf

20–40

5

30

–40

–2

–10

40–80

30

50

–20

–1

–30

60–80

40

70

0

0

0

80–100

20

90

20

1

20

100–120

5

110

40

2

10

Итого

100

–10

Наибольшая частота f равна 40, следовательно, в качестве постоянной величины А принимаем 70.

Определяем момент первого порядка: .

Возможно вы искали - Доклад: Краснодарская улица Красная

Среднее значение признака равно: + 70 =
= 68 м2 .

Следовательно, средняя площадь магазина составляет 68 м2 .

5.3. Структурные средние

В качестве структурных средних чаще всего используют показатели моды и медианы. Мода (Мо ) – наиболее часто повторяющееся значение признака. Медиана (Ме ) – величина признака, которая делит упорядоченный ряд на две равные по численности части.

Если расчет моды и медианы проводится в дискретном ряду, то он опирается на их понятия. В интервальном ряду распределения для расчета моды и медианы применяют следующие формулы.

Похожий материал - Реферат: Сейсмостойкое строительство

Мода рассчитывается по формуле

,

где хМо – нижнее значение модального интервала;

iМо – размер модального интервала;

fМо – частота модального интервала;

fМо –1 – частота, предшествующая модальной частоте;

Очень интересно - Реферат: Строительство и реконструкция горных предприятий

fМо +1 – частота, последующая за модальной частотой.

Модальному интервалу соответствует наибольшая (модальная) частота. Медиана рассчитывается по формуле

,

где хМе – нижнее значение медианного интервала;

iМе – размер медианного интервала;

Sf – сумма частот;

Вам будет интересно - Реферат: Учет договоров на строительство 3

SМе –1 – сумма частот, предшествующих медианной частоте;

fМе – медианная частота.

Медианному интервалу соответствует медианная частота. Таким интервалом будет интервал, сумма накопленных частот которого равна или превышает половину суммы всех частот.

Рассмотрим определение моды и медианы на следующих примерах.

Пример 6 . В результате статистического обследования области получены следующие данные по распределению семей по числу детей (табл. 16).

Таблица 16

Число детей (х )

Количество семей, в % к итогу ( f )

0

5

1

32

2

34

3

16

4

6

5

4

6 и более

3

Итого

100

Похожий материал - Реферат: Історія хімії

Следует определить моду и медиану.

Решение

В дискретных рядах модой является варианта с наибольшей частотой. Наибольшая частота – 34, следовательно мода равна 2.

Для вычисления медианы определим сумму частот ряда (Sf = 100), затем рассчитаем полусумму .