Реферат: Тепловые насосы 3

Теплово й насо с, устройство для переноса тепловой энергии от теплоотдатчика с низкой температурой (чаще всего — окружающей среды) к теплоприёмнику с высокой температурой. Для работы Теплового насоса необходима затрата внешней энергии (например, механической, электрической, химической). Процессы, происходящие в Тепловом насосе, подобны процессам, осуществляемым рабочим телом в холодильной машине, с той разницей, что назначение холодильной машины — производство холода, а Теплового насоса — производство теплоты. Рабочим телом в Тепловом насосе обычно является жидкость с низкой температурой кипения (например, фреон, аммиак). Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель — теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.Теплоприёмник Теплового насоса получает, кроме теплоты, эквивалентной совершаемой внешней работе, теплоту, перенесённую от теплоотдатчика, например речной воды; следовательно, коэффициент преобразования энергии в Тепловом насосе всегда больше единицы и такой процесс более выгоден, чем непосредственное превращение электрической, механической или химической энергии в теплоту. Иногда Тепловые насосы применяется для отопления в районах с жарким климатом, так как в летний период эта же установка охлаждает подаваемый в здание воздух. Тепловой насос получил широкое распространение во время 2-й мировой войны 1939—45 в связи с топливными затруднениями, особенно в странах, где имеется в избытке дешёвая электрическая энергия гидростанций (например, в Швейцарии, Швеции, Норвегии и др.).

История возникновения теплового насоса

Концепция тепловых насосов была разработана еще в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером. Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году[4] . Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер экспериментировал с морозильной камерой[5] . Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что тепло просто выбрасывается наружу. Изобретатель задумался над тем, как использовать это тепло, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть тепла от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника тепла можно нагревать и воду, и воздух одновременно, поэтому Вебер усовершенствовал свое изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять тепло по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» тепло из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» тепло земли. Газ конденсировался, отдавал свое тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь.

В 40-х годах тепловой насос был известен своей чрезвычайной эффективностью, но реальная потребность в нём возникла во время Арабского нефтяного эмбарго в 70-х годах, когда несмотря на низкие цены на энергоносители появился интерес к энергосбережению. Именно тогда доктор Джеймс Бозе , профессор Университета штата Оклахома, случайно наткнулся на старый инженерный текст о концепции тепловых насосов. Доктор Бозе решил помочь собственникам домов, чьи тепловые насосы сбрасывали горячую воду в бассейн, и приспособил тепловой насос для циркуляции воды по трубам вместо слива в бассейн. Это положило начало новой эре в области геотермальных систем. Доктор Бозе вернулся в Университет и начал развивать свою идею. С того времени Университет штата Оклахома стал центром исследования и развития геотермальных тепловых насосов . Международная Ассоциация геотермальных тепловых насосов была основана в Оклахоме и располагается в корпусе государственного Университета штата Оклахома, в которой доктор Бозе является исполнительным директором.

Сегодня именем Риттингера названа Международная премия по тепловым насосам (медаль с его изображением), посвящённая достижениям в области теплонасосных и связанных с ними технологий, таких как отопление и кондиционирование воздуха. Последними владельцами этой престижной премии являются профессор Королевского Института Технологий (Стокгольм, Швеция) Эрик Гренрид, профессор Университета Иллинойс (США) Предраг Хнджак и доктор наук Джеральд Грофф, США, которые были награждены на 9-ой Конференции Международного Энергетического Агентства по тепловым насосам, которая проходила 20–22 мая 2008 года в Цюрихе (Швейцария). Следующая Международная конференция по тепловым насосам будет проводиться в июне 2011 года в Токио, Япония.

История возникновения теплового насоса

Возможно вы искали - Контрольная работа: Технико-экономическое проектирование пищевых предприятий


►Первый промышленный тепловой
насос, 1904 г. Лардарелло, Италия

Использование тепловых насосов, безусловно, является технологией будущего, но сама идея совсем не нова. На самом деле концепция тепловых насосов была разработана ещё в 1852 году известным британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттером фон Риттингером (Peter Ritter von Rittinger), которого и считают изобретателем теплового насоса. Именно Риттингер спроектировал и установил первый тепловой насос в 1855 году. Сегодня его именем названа Международная премия по тепловым насосам (медаль с изображением Петера Риттера фон Риттингера), посвящённая достижениям в области теплонасосных и связанных с ними технологий, таких как отопление и кондиционирование воздуха. Последними владельцами этой престижной премии являются профессор Королевского Института Технологий (Стокгольм, Швеция) Эрик Гренрид (Prof. Eric Granryd), профессор Университета Иллинойс (США) Предраг Хнджак (Prof. Predrag S. Hrnjak) и доктор наук Джеральд Грофф (M. Sc. Gerald C. Groff), США, которые были награждены на 9-ой Конференции Международного Энергетического Агентства по тепловым насосам (International Energy Agency Heat Pump Conference), которая проходила 20–22 мая 2008 года в Цюрихе (Швейцария). Следующая Международная конференция по тепловым насосам будет проводиться в июне 2011 года в Токио, Япония.


►Наибольшая теплонасосная
система в мире, Луисвилль, США

Но практическое применение тепловой насос приобрёл значительно позже, а именно в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер (Robert C. Webber) экспериментировал с морозильной камерой. После снижения температуры в камере он прикоснулся к трубе на выходе и почти обжёг ладонь. Вебер понял, что тепло просто выбрасывается наружу, поэтому он поместил выводящую трубу своей морозильной камеры (точка нагрева) в бойлер и таким образом обеспечил свою семью более горячей водой, нежели они обычно использовали! Но всё же ещё оставалось тепло, которое не использовалось, поэтому он решил прогонять горячую воду по спирали (через змеевик) и при помощи небольшого вентилятора распространять тепло по дому с целью экономии угля. Мистер Вебер был настолько удовлетворён результатом, что решил сконструировать полноценный тепловой насос для комфортного отопления всего дома. У Вебера также появилась идея «выкачивать» тепло из земли, где температура не слишком колебалась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон и «собирал» тепло земли. Газ конденсировался, отдавал своё тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. Через год мистер Вебер продал свою старую угольную печь.


►Доктор Джеймс
Бозе, США

Похожий материал - Реферат: How To Avoid Road Rage Essay Research

В 40-х годах тепловой насос был известен своей чрезвычайной эффективностью, но реальная потребность в нём возникла во время Арабского нефтяного эмбарго в 70-х годах, когда несмотря на низкие цены на энергоносители появился интерес к энергосбережению . Именно тогда доктор Джеймс Бозе , профессор Университета штата Оклахома, случайно наткнулся на старый инженерный текст о концепции тепловых насосов. Доктор Бозе решил помочь собственникам домов, чьи тепловые насосы сбрасывали горячую воду в бассейн, и приспособил тепловой насос для циркуляции воды по трубам вместо слива в бассейн. Это положило начало новой эре в области геотермальных систем. Доктор Бозе вернулся в Университет и начал развивать свою идею. С того времени Университет штата Оклахома стал центром исследования и развития геотермальных тепловых насосов . Международная Ассоциация геотермальных тепловых насосов была основана в Оклахоме и располагается в корпусе государственного Университета штата Оклахома, в которой доктор Бозе является исполнительным директором.

Эффективность

В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растёт эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса. Для этого, также, необходимо увеличивать площади теплообмена, чтобы перепад температур между источником тепла и холодным рабочим телом, а также между горячим рабочим телом и отапливаемой средой был поменьше. Это снижает затраты энергии на отопление, но приводит к росту габаритов и стоимости оборудования.

Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла (воздух), в то время как в традиционных источниках тепла воздух используется как окислитель.

Очень интересно - Сочинение: Анализ стихотворения А. Блока Незнакомка 2

Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена[источник не указан 670 дней ] введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

[править ] Условный КПД тепловых насосов

Применение тепловых насосов для обогрева помещений эффективнее отопительных газовых котлов , при этом можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами.[7] . Однако, даже современные парогазотурбинные установки на электростанциях выделяют большое количество тепла, что и используется в когенерации . Тем не менее, при использовании электростанций, которые не генерируют попутное тепло (солнечные батареи , ветряные электростанции , топливные элементы ) применении тепловых насосов также более эффективно, чем использование электронагревательных приборов.

В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (то есть услуги электрических сетей ). В результате отпускная цена электричества в 3-5 раз превышает его себестоимость, что приводит к финансовой неэффективности данной технологии.

Типы

Вам будет интересно - Реферат: Роль банков в современной экономике

В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью электроэнергии или топлива).
В зависимости от источника отбора тепла тепловые насосы подразделяются на[8] :

  1. Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод)

а) замкнутого типа

  • горизонтальные

Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,20 м и более)[9] . Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.

  • вертикальные

Коллектор размещается вертикально в скважины глубиной до 200 м[10] . Этот способ применятся в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.

  • водные

Коллектор размещается извилисто либо кольцами в водоеме (озере, пруде, реке) ниже глубины промерзания. Это наиболее дешевый вариант, но есть требования по минимальной глубине и объему воды в водоеме для конкретного региона.
б) открытого типа
Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещен законодательством.

  1. Воздушные (источником отбора тепла является воздух)
  2. Использующие производное (вторичное) тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитного тепла, которое требует утилизации .

Похожий материал - Реферат: 1984 Vs Brave New World Essay Research

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух».

Преимущества и недостатки

К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с кпд до 50 %, эффективность использования топлива при применении тепловых насосов повышается. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.

Еще одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы .