Реферат: Планеты-гиганты

по предмету: Физика

на тему: Планеты-гиганты

выполнил: студентка гр. ТЭП-11

Рюмшина Ю.Н.

Проверил: преподаватель физики

Возможно вы искали - Реферат: Плутон

Шевцова С.А.

Курск-2001

План

1. Планеты-гиганты

2. Спутники планет-гигантов и Плутон

3. Состав и строение спутников планет-гигантов

4. Список используемой литературы

ПЛАНЕТЫ-ГИГАНТЫ

Юпитер, Сатурн, Уран и Нептун представляют юпитерову группу планет, или группу планет-гигантов, хотя их большие диаметры не единственная черта, отличающая эти планеты от планет земной группы. Планеты-гиганты имеют небольшую плотность, краткий период су­точного вращения и, следовательно, значительное сжа­тие у полюсов; их видимые поверхности хорошо отража­ют, или, иначе говоря, рассеивают солнечные лучи.

Похожий материал - Реферат: Планеты-гиганты

Уже довольно давно установили, что атмосферы планет-гигантов состоят из метана, аммиака, водорода, гелия. Полосы поглощения метана и аммиака в спектрах больших планет видны в огромном количестве. Причем с переходом от Юпитера к Нептуну метановые полосы постепенно усиливаются, а полосы аммиака слабеют. Основная часть атмосфер планет-гигантов заполнена густыми облаками, над которыми простирается доволь­но прозрачный газовый слой, где «плавают» мелкие частицы, вероятно, кристаллики замерзших аммиака и метана.

Вполне естественно, что среди планет-гигантов луч­ше всего изучены две ближайшие к нам — Юпитер и Сатурн.

Поскольку Уран и Нептун сейчас не привлекают к себе особенного внимания ученых, остановимся более подробно на Юпитере и Сатурне. К тому же значитель­ная часть вопросов, которые можно решить в связи с описанием Юпитера и Сатурна, относится также и к Нептуну.

Юпитер является одной из наиболее удивительных планет Солнечной системы, и мы уделяем ему значитель­но больше внимания, чем Сатурну. Необычайным в этой планете является не ее полосатое тело с довольно быстрым перемещением темных полос и изменением их ширины и не огромное красное пятно, диаметр которого около 60 тыс. км., изменяющее время от времени свой цвет и яркость, и, наконец, не его «господствующее» по размеру и массе положение в планетной семье. Необычайное за­ключается в том, что Юпитер, как показали радио­астрономические наблюдения, является источником не только теплового, а и так называемого нетеплового ра­диоизлучения. Вообще для планет, которым присущи спокойные процессы, нетепловое радиоизлучение явля­ется совсем неожиданным.

То, что Венера, Марс, Юпитер и Сатурн являются источниками теплового радиоизлучения, теперь твер­до установлено и не вызывает у ученых никакого сомнения. Это радиоизлучение целиком совпадает с тепловым излучением планет и является «остатком», а точнее—низкочастотным «хвостом» теплового спектра нагретого тела. Поскольку механизм теплового радио­излучения хорошо известен, такие наблюдения позво­ляют измерять температуру планет. Тепловое радиоиз­лучение регистрируется с помощью радиотелескопов сантиметрового диапазона. Уже первые наблюдения Юпитера на волне 3 см дали температуру радиоизлучения такую же, как и радиометрические наблюдения в ин­фракрасных лучах. В среднем эта температура составля­ет около— 150°С. Но случается, что отклонения от этой средней температуры достигают 50—70, а иногда 140°С, как, например, в апреле — мае 1958 г. К сожалению, пока не удалось выяснить, связаны ли эти отклонения радио­излучения, наблюдаемые на одной и той же волне, с вращением планеты. И дело тут, очевидно, не в том, что угловой диаметр Юпитера в два раза меньше наи­лучшей разрешающей способности крупнейших радиоте­лескопов и что, следовательно, невозможно наблюдать отдельные части поверхности. Существующие наблюде­ния еще очень немногочисленны для того, чтобы отве­тить на эти вопросы.

Очень интересно - Реферат: Плутон-планета или астероид?

Что касается затруднений, связанных с низкой раз­решающей способностью радиотелескопов, то в отноше­нии Юпитера можно попробовать их обойти. Нужно только надежно установить на основании наблюдений период аномального радиоизлучения, а потом сравнить его с периодом вращения отдельных зон Юпитера. Вспомним, что период 9 час. 50 мин., — это период вращения его эквато­риальной зоны. Период для зон умеренных широт на 5—6 мин. больший (вообще на поверхности Юпитера на­считывается до 11 течений с разными периодами).

Таким образом, дальнейшие наблюдения могут привести нас к окончательному результату. Вопрос о связи аномального радиоизлучения Юпитера с периодом его вращения имеет немаловажное значение. Если, напри­мер, выяснится, что источник этого излучения не связан с поверхностью Юпитера, то возникнет необходимость в более старательных поисках его связи с солнечной ак­тивностью.

Не так давно сотрудники Калифорнийского техноло­гического института Ракхакришнан и Робертс наблюда­ли радиоизлучения Юпитера на дециметровых волнах (31 см ). Они использовали интерферометр с двумя пара­болическими зеркалами. Это позволило им разделить угловые размеры источника, который представляет со­бой кольцо в плоскости экватора Юпитера, диаметром около трех диаметров планеты. Температура Юпитера, которую определили на дециметровых волнах, оказалась слишком высокой для того, чтобы можно было считать природу источника этого радиоизлучения тепловой. Оче­видно, тут мы имеем дело с излучением, происходящим от заряженных частиц, захваченных магнитным полем Юпитера, а также сконцентрированных вблизи планеты благодаря значительному гравитационному полю.

Итак, радиоастрономические наблюдения стали мощ­ным способом исследования физических условий в атмо­сфере Юпитера.

Мы кратко рассказали о двух видах радиоизлучения Юпитера. Это, во-первых, главным образом тепловое ра­диоизлучение атмосферы, которое наблюдается на санти­метровых волнах. Во-вторых, радиоизлучение на деци­метровых волнах, имеющее, по всей вероятности, нетеп­ловую природу.

Вам будет интересно - Реферат: Принцип работы и назначение телескопа

Остановимся кратко на третьем виде радиоизлучения Юпитера, которое, как упоминалось выше, является не­обычным для планет. Этот вид радиоизлучения имеет также нетепловую природу и регистрируется на радио­волнах длиной в несколько десятков метров.

Ученым известны интенсивные шумовые бури и всплески «возмущенного» Солнца. Другой хорошо из­вестный источник такого радиоизлучения — это так называемая Крабовидная туманность. Согласно пред­ставлению о физических условиях в атмосферах и на поверхностях планет, которое существовало до 1955 г., никто не надеялся, что хотя бы одна из планет в состоя­нии «дышать» по образцу разных по природе объектов — Солнца или Крабовидной туманности. Поэтому не удиви­тельно, что когда в 1955 г. наблюдатели за Крабовидной туманностью зарегистрировали дискретный источник радиоизлучения переменной интенсивности, они не сразу решились отнести его на счет Юпитера. Но никакого дру­гого объекта в этом направлении не было обнаружено, поэтому всю «вину» за возникновение довольно значи­тельного радиоизлучения в конце концов возложили на Юпитер.

Характерной особенностью излучения Юпитера яв­ляется то, что радиовсплески длятся недолго (0,5—1,5 сек. ). Поэтому в поисках механизма радиоволн в этом случае приходится исходить из предположения либо о дис­кретном характере источника (подобного разрядам), либо о довольно узкой направленности излучения, если источник действует непрерывно. Одну из возможных причин происхождения радиовсплесков Юпитера объяс­няла гипотеза, согласно которой в атмосфере плане­ты возникают электрические разряды, напоминающие молнию. Но позднее выяснилось, что для образования столь интенсивных радиовсплесков Юпитера мощность разрядов должна быть почти в миллиард раз большей, чем на Земле. Это значит, что, если радиоизлучение Юпи­тера возникает благодаря электрическим разрядам, то последние должны носить совершенно иной характер, чем возникающие во время грозы на Земле. Из других гипо­тез заслуживает внимания предположение, что Юпитер окружен ионосферой. В этом случае источником возбуж­дения ионизованного газа с частотами 1—25 мгц могут быть ударные волны. Для того чтобы такая модель согла­совалась с периодическими кратковременными радио­всплесками, следует сделать предположение о том, что ра­диоизлучение выходит в мировое пространство в грани­цах конуса, вершина которого совпадает с положением источника, а угол у вершины составляет около 40°. Не исключено также, что ударные волны вызываются про­цессами, происходящими на поверхности планеты, или конкретнее, что тут мы имеем дело с проявлением вулка­нической деятельности. В связи с этим необходимо пере­смотреть модель внутреннего строения планет-гигантов. Что же касается окончательного выяснения механизма происхождения низкочастотного радиоизлучения Юпи­тера, то ответ на этот вопрос следует отнести к будуще­му. Теперь же можно сказать лишь то, что источники этого излучения на основании наблюдений в течение восьми лет не изменили своего положения на Юпитере. Следовательно, можно думать, что они связаны с по­верхностью планеты.

Таким образом, радионаблюдения Юпитера за по­следнее время стали одним из наиболее эффективных методов изучения этой планеты. И хотя, как это часто случается в начале нового этапа исследований, толко­вание результатов радионаблюдений Юпитера связано с большими трудностями, мнение в целом о нем как о холодной и «спокойной» планете довольно резко изме­нилось.

Наблюдения показывают, что на видимой поверх­ности Юпитера есть много пятен, различных по форме, размеру, яркости и даже цвету. Расположение и вид этих пятен изменяются довольно быстро, и не только благо­даря быстрому суточному вращению планеты. Можно назвать несколько причин, вызывающих эти изменения. Во-первых, это интенсивная атмосферная циркуляция, подобная той, которая происходит в атмосфере Земли благодаря наличию разных линейных скоростей враще­ния отдельных воздушных слоев; во-вторых, неодина­ковое нагревание солнечными лучами участков планеты, расположенных на разных широтах. Большую роль мо­жет играть также внутреннее тепло, источником которо­го является радиоактивный распад элементов.

Похожий материал - Реферат: Проблема Великого Молчания Внеземных Цивилизаций

Если фотографировать Юпитер на протяжении дли­тельного времени (скажем, в течение нескольких лет) в моменты наиболее благоприятных атмосферных условий, то можно заметить изменения, происходящие на Юпи­тере, а точнее — в его атмосфере. Наблюдениям над этими изменениями (с целью их объяснения) сейчас уделяют большое внимание астрономы разных стран. Греческий астроном Фокас, сравнивая карты Юпитера, созданные в разные периоды (иногда с интервалом в десятки лет), пришел к заключению: изменения в атмо­сфере Юпитера связаны с процессами, происходящими на Солнце.

Нет сомнений, что темные пятна Юпитера принадле­жат плотному слою сплошных облаков, окружающих планету. Над этим слоем находится довольно разрежен­ная газовая оболочка.

Атмосферное давление, создаваемое газовой частью атмосферы Юпитера на уровне облаков, вероятно, не превышает 20—30 мм. рт. ст. По крайней мере, газовая оболочка во время наблюдения Юпитера через синий светофильтр едва заметно уменьшает контрасты между темными пятнами и яркой окрестностью. Следовательно, в целом газовый слой атмосферы Юпитера довольно прозрачный. Об этом свидетельствуют также фотомет­рические измерения распределения яркости вдоль диа­метра Юпитера. Выяснилось, что уменьшение яркости к краю изображения планеты почти одинаковое как в синих, так и в красных лучах. Следует заметить, что между слоями облаков и газа на Юпитере резкой гра­ницы, безусловно, нет, а поэтому приведенное выше зна­чение давления на уровне облаков надо считать при­ближенным.

Химический состав атмосферы Юпитера, как и дру­гих планет, начали изучать еще в начале XX ст. Спектр Юпитера имеет большое количество интенсивных полос, расположенных как в видимом, так и в инфракрасном участке. В 1932 г. почти каждая из этих полос была отождествлена с метаном или аммиаком.