Реферат: Теории прочности в эпоху Возрождения

Александр Акопов, Валентин Зацаринный

Почему большая машина слабее маленькой?

Полторы тысячи лет прошло со времени исчезновения с лица земли шести из семи чудес света, когда Леонардо да Винчи начал эксперименты по изучению прочности материалов. Несколько тысяч лет зодчие рассчитывали прочность, главным образом, опираясь на интуицию. С опытов Леонардо начался экспериментальный период в развитии строительной механики. Жизнь великого художника, исследователя, инженера из крохотного итальянского городка Винчи, титана эпохи Возрождения, достаточно подробно освещена во многих книгах. Мы остановимся лишь на той стороне его деятельности, которая непосредственно связана с предметом нашего повествования.

Леонардо был неутомимым экспериментатором. Производя многочисленные опыты, он фиксировал все в своих записных книжках. Всякий раз он начинал с вопроса, который представлял собой как бы программу предстоящего опыта. Например: "Если нить в 1 локоть поддерживает 10 фунтов, то сколько фунтов поддержит нить такой же толщины, но длиной в 100 локтей?"; "Если деревянная опора поддерживает 100 фунтов, сколько поддерживает 10 таких же деревянных опор, тесно связанных вместе?"; "Если 1 балка поддерживает 1000 фунтов, то сколько поддерживают 4 балки, положенные одна над другой?" Ставя, таким образом, задачу, Леонардо часто сразу же решал ее так, как, по его мнению, подсказывал ход рассуждений. После этого он приступал непосредственно к опыту и уже тогда фиксировал полученные данные и общий вывод. Вызывает удивление тщательность, с которой описывались условия и технология производства эксперимента.

Леонардо испытывал на изгиб балки на двух опорах, консольные балки, колонны. Он пришел к выводу, что "несколько малых опор, соединенных вместе, выдержат больший вес, чем если они будут разделены. Например, 1000 столбиков одной к той же толщины и длины, если ты поставишь каждый из них вертикально, согнутся под нагрузкой какой-нибудь одной единицы веса; если же ты свяжешь их вместе так, чтобы связки заставляли их соприкасаться, то каждый из столбиков сможет выдерживать, не сгибаясь, в 12 раз больший вес, чем раньше".

Опыты Леонардо с прутьями дали возможность судить о влиянии устойчивости на прочность. "Пусть к вершине прута приложен вес в 1 динар, ты увидишь, что он согнется до земли, но возьми 1000 этих прутьев и туго свяжи их вместе, и укрепи их снизу и сравняй их сверху, и ты увидишь, что в то время как по первому соображению они должны были бы выдерживать около 3,5 фунта, они будут выдерживать более 40". Значительное увеличение прочности в опытах с опорами и прутьями, зафиксированное Леонардо, происходило за счет увеличения жесткости, вместе с которой резко возросла устойчивость. Теория объяснила это через три века.

Возможно вы искали - Доклад: К истории сооружения Волжской гидроэлектростанции

Леонардо да Винчи проводил интересные испытания на растяжение металлических проволок, лютневых струн, различных волокон. Он сконструировал оригинальное приспособление для определения сопротивления железной проволоки разрыву. "Укрепив железную проволоку длиной в два локтя на чем-либо так, чтобы она крепко держалась, затем, подвесив к ней корзину, ящик или что-либо подобное, через малое отверстие на дне воронки насыпать туда некоторое количество мелкого песку. Как только проволока лопнет, отверстие воронки закроется укрепленной на ней пружиной. Падая, корзина не опрокинется, так как она падает с небольшой высоты. Вес песка и место разрыва проволоки следует заметить". Далее предполагалось повторить опыт многократно при разной длине проволоки.

Конечно, не все выводы Леонардо правильны, есть в них противоречия, ошибки. Не всегда соблюдалась чистота эксперимента. Поэтому вряд ли можно говорить о значительной практической или теоретической ценности этих опытов, тем более что его материалы в то время не были опубликованы. Однако они имеют немалое значение для истории механики. Оно состоит в том, что впервые поиск прочности приобрел форму сознательного, специально заданного исследования.

Новый значительный шаг в развитии представлений о прочности через 120 лет после Леонардо да Винчи суждено было сделать еще одному титану Возрождения - Галилею.

Великий итальянский физик, механик, астроном и литератор Галилео Галилей признан одним из основоположников естествознания. Более 20 лет он возглавлял кафедру математики вначале в Пизанском университете, а затем в Падуе. Галилей интересовался многими отраслями науки, но наиболее значительное в его деятельности связано с астрономией.

Сконструировав небольшой телескоп, а вернее сказать, подзорную трубу с увеличением в 32 раза, Галилей стал наблюдать звездное небо и обнаружил на нем много нового и удивительного. Он открыл фазы Венеры, описал строение Сатурна, увидел солнечные пятна. Оказалось, Луна изрезана кратерами и вулканами, поэтому ее поверхность имеет большие неровности. У Юпитера он насчитал четыре спутника. В телескоп вместо одной звезды, видимой невооруженным глазом, можно обнаружить целое скопление. И вообще в поле зрения человека оказались новые звезды! Свои наблюдения Галилей описал в трактате "Звездный вестник".

Похожий материал - Реферат: День рождения Сети

Естественно, великий Галилей не мог только наблюдать и описывать небесные тела. Он задумывается над системой мира по Копернику и признает ее верной, пропагандирует ее в лекциях, частных беседах и, письмах. Но в 1616 г. учение Коперника официально признано еретическим, и Галилею предложили прекратить выступления в его защиту. Формально Галилей смирился с требованиями инквизиции, и в его университетских лекциях давалась система Птолемея. Однако в то же время он стал добиваться перед папой отмены запрета на учение Коперника. Галилей создает свой знаменитый "Диалог о двух главнейших системах мира", где в разговорах трех собеседников подробно анализируются системы мира по представлениям Птолемея и Коперника. Папа Урбан VIII дает согласие на это при условии, что учение Коперника будет подано в ней как одна из гипотез. В январе 1632 г. "Диалог" вышел в свет. Книга Галилея произвела огромное впечатление на современников. Преимущество коперникова учения сразу стало очевидным. Через несколько месяцев книгу изъяли из продажи и запретили, а в 1633 г. на четырех допросах - с 12 апреля по 22 июля -Галилео Галилей произнес публичное покаяние, отрекшись от своих взглядов. Ему было запрещено писать и говорить о движении Земли. Как "узник инквизиции" Галилей отправился в свою виллу в Арчетри близ Флоренции, где в уединении провел безвыездно последние годы жизни. Умер он в 1642 г. Похоронили его без почестей, на могиле не поставили памятника. И лишь через 95 лет была исполнена последняя воля великого ученого: прах его был перенесен во Флоренцию и похоронен в церкви Санта-Кроче, рядом с могилой Микеланджело.

Вот этот последний период своей жизни "великий еретик" и посвятил исследованиям в области механики. Измученный болезнями, с ухудшающимся зрением, а затем и вовсе слепой, Галилей создает свой великий труд "Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению". В эту работу 74-летнего ученого вошли его наблюдения и рассуждения, опыты, исследования, производимые им в разные годы жизни. Книга была издана на итальянском языке в голландском городе Лейдене в 1638 г.

Величайшая заслуга Галилея заключается в том, что он положил начало развитию двух разделов механики - динамики и сопротивления материалов как самостоятельных наук. Надо отдать должное издателям, которые сумели достойно оценить труд Галилея. В предисловии к лейденскому изданию говорилось, что Галилей "открыл две новые науки и доказал наглядно-геометрически принципы их основания. Что должно сделать это сочинение еще более достойным удивления, это то, что одна из наук касается предмета вечного, имеющего первейшее значение в природе, обсуждавшегося великими философами и изложенного во множестве уже написанных томов, короче сказать, движения падающих тел - предмета, по поводу которого автором изложено множество удивительных случаев, которые до сего времени оставались никем не открытыми или не доказанными. Другая наука, также развитая из основных ее принципов, касается сопротивления, оказываемого твердыми телами силе, стремящейся их сломить, а также изобилует примерами и предложениями, остававшимися до сих пор никем не замеченными".

Великий Галилей вошел в историю прежде всего как астроном. Общеизвестна его борьба за учение Коперника, печальной страницей его биографии явилось отречение от этого учения. Заслужили признание многие стороны деятельности Галилея, в частности, его открытия в области динамики (Лагранж утверждал, что "первые ее основы заложены Галилеем"), А вот его работы в области сопротивления материалов менее известны. Между тем именно Галилей свел большой круг вопросов, связанных с прочностью и разрушением материалов, в одну область знания. Он впервые указал на необходимость построения собственной теории, создания собственной науки - сопротивления материалов.

Один вопрос мучил Галилея давно. Как-то он наблюдал за постройкой галер. Когда было решено построить галеру значительных размеров, мастера решили эту проблему весьма просто. Они увеличили вдвое каждый элемент и соединение, создав галеру, вдвое большую, но абсолютно подобную обычной. Каково же было изумление строителей, да и самого Галилея, когда большая галера разрушилась, не начав плаванья. Вспоминая об этом в Арчетри, он снова и снова задавал себе один и тот же вопрос: "Почему при соответственном увеличении материала не возрастает в той же мере способность сопротивления?" Почему один гвоздь вдвое толще другого может выдержать груз в 3-4 раза, а может быть, в 8 раз больший, чем первый, рассуждал Галилей, а здесь этого не происходит?

Очень интересно - Реферат: Азбука русских изобретений

Сегодня мы знаем, что неверно сравнивать гвоздь с галерой, ибо гвоздь - это элемент, а галера - конструкция, и в ней по сравнению с элементом прочность резко снижается. К тому же, гвоздь и галера были изготовлены из различных материалов и под нагрузкой вели себя по-разному. Но по отношению друг к другу одинаковых конструкций - галер - Галилей сделал правильный вывод: "Если мы, отвлекшись от всякого несовершенства материи и предположив таковую неизменяемой и лишенной всяких случайных недостатков, построим большую машину из того же самого материала и точно сохраним все пропорции меньшей, то в силу самого свойства материи мы получим машину, соответствующую меньшей во всех отношениях, кроме прочности и сопротивляемости внешнему воздействию: в этом отношении, чем больше будет она по размеру, тем менее будет она прочна". Галилей считал: "Если имеется балка с определенным соотношением толщины к длине, допустим 1:100, то не может существовать ни одной другой балки из того же материала, которая будет сопротивляться так же. Если балка будет больше размерами, она будет ломаться от собственного веса, если меньше - сможет выдержать какой-либо груз дополнительно" (рис. 1).

Это явление, названное впоследствии масштабным фактором, учитывается и сейчас в расчетах строительной механики. В действующих советских стандартах на испытание строительных материалов вводятся переводные коэффициенты для показателя прочности. Чем меньше лабораторный образец, тем больший уменьшающий коэффициент надо вводить, чтобы получить прочность промышленного элемента или конструкции.

Обнаружив, что одна и та же пластинка сопротивляется изгибу значительно лучше, будучи поставленной на ребро, Галилей задолго до появления понятия момента инерции сечения пытался геометрически обосновать это явление.

Галилей предлагал использовать пустотелые элементы - трубы металлические и деревянные, сравнивая их с созданием природы - костями птиц и животных, тростником, стеблем растения. Он заключает, что при сравнении сплошной и трубчатой балок, имеющих одинаковую площадь сечения, трубчатая будет во столько раз прочнее, во сколько диаметр трубы больше диаметра сплошной балки.

Галилей изучал только два вида деформации - растяжение и изгиб на всевозможных элементах из различных материалов, объясняя причины их прочности и разрушения. "Подобно тому, как в веревке мы приписываем ее сопротивление множеству составляющих ее нитей пеньки, так и в дереве мы находим продольные волокна и нити, делающие его более прочным, нежели пеньковая веревка такой же толщины. Что касается цилиндра из камня или металла, то еще большая связанность их частей зависит от другой причины, отличной от нитей и волокон; но и эти материалы также могут быть разорваны сильным растягиванием". Даже водяной столб во всасывающем насосе Галилей рассматривает как элемент, работающий на растяжение и разрывающийся при увеличении нагрузки выше определенного предела.

Вам будет интересно - Реферат: От зарубок к биокомпьютеру

Нужно помнить, что Галилей во всех случаях изучал состояние материалов в момент разрушения. Прочность, по Галилею, была связана с критическим, предельным состоянием элемента. Ученый пытался понять, почему колонна или балка разрушается, какая сила вызывает это разрушение? Каковы должны быть форма, геометрические размеры и условия работы элемента, чтобы он не разрушался? Поведение же нагруженного элемента в нормальном рабочем состоянии, физико-механические процессы, происходящие при обычных нагрузках, были Галилею неведомы. Его представление о прочности тел и закономерности разрушения, на первый взгляд, было весьма упрощенным: тело разрушается в том случае, когда действующая на него растягивающая сила превзойдет предельную величину, постоянную для данного материала.

Галилей пытался выйти за рамки умозрительных рассуждений и при помощи математических доказательств прийти к теоретическому обобщению. Для этого ему не хватало математического аппарата и данных теоретической механики, поэтому нельзя сказать, что он построил теорию. Но он подготовил почву, на которой в дальнейшем выросла первая теория прочности.

Немногим позднее вопросами прочности твердых тел заинтересовался французский ученый Мариотт (1620-1684). В связи с задачами, возникшими при проектировании Версальского дворца, он проводит большие эксперименты по растяжению и изгибу самых разных материалов. Мариотт, изучая прочность деревянных и стеклянных балок, проверил результаты Галилея и убедился в их справедливости.

Необходимость создания надежного водопровода в Версале заставила Мариотта испытывать балки, жестко заделанные двумя концами. Он обнаружил, что прочность таких балок увеличивалась вдвое по сравнению со свободно опертыми балками.

Заливая водой трубы высотой до 30 м, Мариотт испытывал их внутренним давлением и получил формулы для расчета на прочность.

Похожий материал - Доклад: История длинноствольного оружия

Опытами Мариотта заканчивается первый, экспериментальный период изучения сопротивления материалов. Результаты научных поисков этого периода принесли огромную пользу и не утратили своего значения до сих пор.

Криптограмма Гука

Наука набирала темпы. Росло число ученых. Возникла потребность в общении их друг с другом, в обмене мнениями, в обсуждении научных проблем. В разных странах Европы, раньше других в Италии, организуются научные общества. Уже в 1560 г. в Неаполе возникла Академия тайн природы, затем в Риме - Академия Линчеев, во Флоренции - Академия опытных знаний. В их работе принимал участие Галилей и его ученики - Торичелли и Вивиана. Позже научные общества возникли в Англии и Франции, еще позже - в России и Германии.

15 июня 1662 г. в Лондоне было официально открыто знаменитое Королевское общество. В число его первых членов вошли видные английские ученые, в том числе известный физик и химик Роберт Бойль. По рекомендации Бойля в Королевское общество был принят Роберт Гук. Бойль провел вместе с Гуком ряд исследований, в частности, работы по усовершенствованию насоса, и высоко оценил его как ученого.

Роберт Гук (1635-1703), сын провинциального священника с острова Уайт, с детства увлекался двумя вещами: устройством всякого рода механизмов и рисованием. После завершения обучения в Вестминстерской школе в 1653 г. он переехал в Оксфорд и поступил на работу в церковь в качестве певчего. Одновременно занимался в Оксфордском университете, специализируясь в области астрономии, и стал ассистентом Р. Бойля. Страсть к изобретательству, оригинальность мышления в сочетании с романтической увлеченностью и буйной фантазией позволили Гуку сделать множество открытий в самых различных областях знания. Гук сконструировал прибор для измерения силы ветра, приспособление для деления круга, ряд приборов для исследования морского дна, ареометр, проекционный фонарь, дождемер, пружинные часы. Он изобрел карданную передачу и систему зубчатых колес, которые теперь известны как вайтовы колеса. Он усовершенствовал зрительную трубу для измерения углов, телескоп, микроскоп, барометр и даже искусственные мышцы для полета в воздухе. Немало и других приборов, механизмов, приспособлений создал и улучшил талантливый механик Роберт Гук. Но это лишь небольшая часть его деятельности.