Реферат: Аппроксимация функций

Из курса математики известны 3 способа задания функциональных зависимостей:

1) аналитический

2) графический

3) табличный

Табличный способ обычно возникает в результате эксперемента.

Возможно вы искали - Реферат: Образцы исследования элементарных функций, содержащих обратные тригонометрические функции

Недостаток табличного задания функции заключается в том, что найдутся значения переменных которые неопределены таблицей. Для отыскания таких значений определяют приближающуюся к заданной функцию, называемой аппроксмирующей, а действие замены аппроксимацией.


φ(х)
Аппроксимация ??????????? ? ???, ??? ????????? ????????? ?????????? ?? f(x) ????? ??????????? ?????? ??????? φ(?) ??????? ? ????????? ?????? ? f(x), ??????????? ????????? ??? ??? ??????????????? ???????? ? ???????? ?????? ??????????? ????? ??????.

φ(х)- аппроксимирующая функция.

Интерполяция (частный случай аппроксимации)

Если для табличной функции y=f(x), имеющей значение x0 f(x0 ) требуется построить аппроксимирующюю функцию j(x) совпадающую в узлах с xi c заданной, то такой способ называется интерполяцией

При интерполяции, заданная функция f(x) очень часто аппроксимируется с помощью многочлена, имеющего общий вид

j(x)=pn (x)=an xn +an-1 xn-1 +…+a0

В данном многочлене необходимо найти коэффициенты an ,an-1 , …a0 , так как задачей является интерполирование, то определение коэффициентов необходимо выполнить из условия равенства:

Похожий материал - Реферат: Асимптота

Pn (xi )=yi i=0,1,…n

Для определения коэффициентов применяют интерполяционные многочлены специального вида, к ним относится и полином Лагранжа Ln (x).

i¹j

В точках отличных от узлов интерполяции полином Лагранжа в общем случае не совпадает с заданной функцией .

Задание

С помощью интерполяционного полинома Лагранжа вычислить значение функции y в точке xc , узлы интерполяции расположены равномерно с шагом Dх=4,1 начиная с точки х0 =1,3 даны значения функции y={-6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27}.

Очень интересно - Реферат: Асимптотические методы исследования нестационарных режимов в сетях случайного доступа

ГСА для данного метода

CLS

DIM Y(9)

DATA -6.56,-3.77,-1.84,0.1,2.29,4.31,5.86,8.82,11.33,11.27

Вам будет интересно - Реферат: Атомические разложения функций в пространстве Харди

X0 = 1.3: H = 4.1: N = 10: XC = 10

FOR I = 0 TO N - 1

1 X(I) = X0 + H * I

READ Y(I)

PRINT Y(I); X(I)

Похожий материал - Реферат: Билеты по аналитической геометрии

NEXT I

S1 = 0: S2 = 0: S3 = 0: S4 = 0

FOR I = 0 TO N - 1

2 S1 = S1 + X(I) ^ 2