Реферат: Двойной интеграл в полярных координатах

П
усть в двойном интеграле

(1)

при обычных предположениях мы желаем перейти к полярным координатам r и f, полагая

x = r cos , y = r sin . (2)

    Область интегрирования S разобьем на элементарные ячейки Si с помощью координатных линий r = ri (окружности) и = i (лучи) (рис.1).

    Введем обозначения:


    Возможно вы искали - Реферат: Двойственный симплекс-метод и доказательство теоремы двойственности

    rj = rj+1 - rj,

    i = i+1 - i


    Так как окружность перпендикулярна (ортогональна) радиусам, то внутренние ячейки Si с точностью до бесконечно малых высшего порядка

    малости относительно их площади можно рассматривать как прямоугольники с измерениями rji и rj; поэтому площадь каждой такой ячейки будет равна:

    Si = rj i rj (3)

    Похожий материал - Реферат: Дедуктивные умозаключения в начальной школе

    Что касается ячеек Sij неправильной формы, примыкающих к границе Г области интегрирования S, то эти ячейки не повлияют на значение двойного интеграла и мы их будем игнорировать.

    В качестве точки Mij Sij для простоты выберем вершину ячейки Sij с полярными координатами rj и i. Тогда декартовые координаты точки Mij равны:

xij = rj cos i, yij = rj sin i.

И следовательно,

f(xij,yij) = f(rj cos i, rj sin i) (3')


    Двойной интеграл (1) представляет собой предел двумерной интегральной суммы, причем можно показать, что на значение этого предела не влияют добавки к слагаемым

    Очень интересно - Реферат: Десятичные дроби

    интегральной суммы, являющиеся бесконечно малыми высшего порядка малости, поэтому учитывая формулы (3) и (3'), п
    олучаем:

    (4)

    где d - максимальный диаметр ячеек Sij и сумма распространена на все ячейки указанного выше вида, целиком содержащиеся в области S. С другой стороны, величины i и rj суть числа и их можно рассматривать как прямоугольные декартовые координаты некоторых точек плоскости Or. Таким образом, сумма (4) является интегральной суммой для функции

    f(r cos, r sin)r,

    с
    оответствующая прямоугольной сетке с линейными элементами i и ri. Следовательно

    Вам будет интересно - Курсовая работа: Дзета функция Римана

    (5)

    С
    равнивая формулы (4) и (5), получим окончательно

    (6)

    Выражение

    dS = r d dr

    Похожий материал - Курсовая работа: Динамическое и линейное программирование

    называется двумерным элементом площади в полярных координатах. Итак, чтобы в двойном интеграле (1) перейти к полярным координатам, достаточно координаты x и y заменить по формулам (2), а вместо элемента площади dS подставить выражение (7).

    Д
    ля вычисления двойного интеграла (6) его нужно заменить повторным. Пусть область интегрирования S определяется неравенствами

    Где r1(), r1() - однозначные непрерывные функции на отрезке [,]. (рис 2).