Реферат: Матожидание, дисперсия, мода и медиана

Одной из важных числовых характеристик случайной величины является математическое ожидание . Введем понятие системы случайных величин. Рассмотрим совокупность случайных величин , которые являются результатами одного и того же случайного эксперимента. Если — одно из возможных значений системы , то событию соответствует определенная вероятность удовлетворяющая аксиомам Колмогорова. Функция , определенная при любых возможных значениях случайных величин , называется совместным законом распределения. Эта функция позволяет вычислять вероятности любых событий из . В частности, совместный закон распределения случайных величин и , которые принимают значения из множества и , задается вероятностями . Расширим понятие независимости случайных событий и введем понятие независимых случайных величин.

1) Математическое ожидание постоянной величины равно самой постоянной, т.е. .

Доказательство . Постоянную можно рассматривать как дискретную случайную величину, принимающую единственное значение с вероятностью 1. .

2) Постоянный множитель можно выносить за знак математического ожидания: .

Доказательство. Пусть случайная величина задана законом распределения вероятностей:

. . . . . .
. . . . . .

Возможно вы искали - Реферат: Матричные операции в вейвлетном базисе

Очевидно, что случайная величина также является дискретной и принимает значения , , ... , , ... с прежними вероятностями , , ... , , ... т.е. закон распределения имеет вид

. . . . . .
. . . . . .

Тогда по определению математического ожидания .

3) Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий:

.

Доказательство. Рассмотрим случайную величину и докажем, что

Действительно, если и заданы рядами распределения

. . .
. . .
. . .
. .

Похожий материал - Реферат: Матричный анализ

то, как было указано выше, случайная величина имеет следующий закон распределения:

. . .
. . .

Тогда

.

Методом математической индукции можно доказать, что если это свойство выполняется для случайных величин, то оно выполняется и для случайных величин.

4) Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых: .

Очень интересно - Реферат: Место аналогии в обучении математике в школе

Доказательство. Пусть заданы две случайные величины и рядами распределения (см. предыдущее свойство).

В силу вышесказанного возможные значения случайной величины будут , , , , ... Их вероятности , , , ... , т.к. они определяются по теореме умножения вероятностей. Т.к. вероятность обозначает вероятность того, что события и наступают совместно, т.е. .

Переходя к математическом ожиданию рассматриваемой суммы, имеем

Предположим, что свойство 4) справедливо для случайной величины применяя в очередной раз метод математической индукции докажем, что это свойство справедливо и для случайных величин.

Дисперсия случайной величины

На практике часто требуется оценить рассеивание возможных значений случайной величины вокруг ее среднего значения. Отклонением случайной величины является разность между значением случайной величины и ее математическим ожиданием и обозначается . Хотя отклонение является величиной случайной, но использовать его для оценки разброса не удобно, т.к. его математическое ожидание всегда равно 0. Поэтому для характеристики рассеивания вводят другие характеристики.

Вам будет интересно - Доклад: Метод Гаусса

Определение. Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения : .

Из этого определения следует, что дисперсия случайной величины вычисляется по формуле

для дискретной случайной величины

для непрерывной случайной величины .

(1)

Справедлива следующая теорема.

Похожий материал - Реферат: Метод Зойтендейка

Теорема. Дисперсия случайной величины равна математическому ожиданию ее квадрата минус квадрат математического ожидания : .

Доказательство. Из определения дисперсии и учитывая, что математическое ожидание — постоянная величина, получим

.

Тогда формула (1) примет вид

для дискретной случайной величины