Тема 1. Роль математики в современном мире. Основные этапы становления математики.
Тема 2. Аксиоматический метод построения научной теории. «Начала» Евклида – образец научного метода. История создания неевклидовой геометрии.
Тема 3. История развития науки о числе . Комплексные числа и действия с ними. Геометрическая интерпретация комплексного числа.
Тема 4. Аналитическая геометрия. Координатный метод. Прямая линия на плоскости.
Тема 5. Кривые второго порядка.
Возможно вы искали - Реферат: Понятие величины и её измерения в начальном курсе математики
Тема 6. Элементы линейной алгебры. Определители, их свойства. Способы вычисления определителей. Решение систем линейных алгебраических уравнений по формулам Крамера.
Тема 7. Матрицы. Алгебра матриц .
Тема 8. Понятие множества. Пересечение множеств, объединение множеств, множества на числовой прямой.
Тема 9. Математический анализ. Функция. Классификация функций.
Тема 10. Предел функции. Теоремы о пределах функций. Замечательные пределы. Понятие о непрерывности функции.
Похожий материал - Реферат: Постановка задачи линейного программирования и двойственная задача линейного программирования.
Тема 11. Производная и дифференциал.
Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла. Таблица неопределенных интегралов.
Тема 13. Определенный интеграл, его свойства. Формула Ньютона – Лейбница.
Тема 14. Несобственные интегралы. Несобственные интегралы с бесконечными пределами интегрирования. Несобственные интегралы от разрывных функций .
Тесты.
Очень интересно - Реферат: Построение графика функции различными методами (самостоятельная работа учащихся)
Литература
Базовая учебная литература к курсу :
1.Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - М.: Наука, 1975г.
2.Минорский В.П. Сборник задач по высшей математике – М.:Наука, 1975г
Тема 1. Роль математики в современном мире. Основные этапы становления математики.
Целью изучения математики является – повышение общего кругозора, культуры мышления, формирование научного мировоззрения.
Математика – наука о количественных отношениях и пространственных формах действительного мира.
Академик Колмогоров А.Н. выделяет четыре периода развития математики: зарождение математики, элементарная математика, математика переменных величин, современная математика.
Вам будет интересно - Реферат: Построение кубического сплайна функции
Начало периода элементарной математики относят к VI-V веку до нашей эры. Был накоплен к этому времени достаточно большой фактический материал. Понимание математики, как самостоятельной науки возникло впервые в Древней Греции.
В течение этого периода математические исследования имеют дело лишь с достаточно ограниченным запасом основных понятий, возникших для удовлетворения самых простых запросов хозяйственной жизни. Развивается арифметика – наука о числе.
В период развития элементарной математики появляется теория чисел, выросшая постепенно из арифметики. Создается алгебра, как буквенное исчисление. Обобщается труд большого числа математиков, занимающихся решением геометрических задач в стройную и строгую систему элементарной геометрии – геометрию Евклида, изложенную в его замечательной книге «Начала» (300 лет до н. э.).
В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур. С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин . Великим открытиям XVII века является введенная Ньютоном и Лейбницем понятие «бесконечно малой величины», создание основ анализа бесконечно малых (математического анализа).
На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.
Похожий материал - Реферат: Построение линии пересечения 2-х конусов и цилиндра
К этому времени относятся и появление гениальной идеи Р. Декарта – метода координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.
Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения.
Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории. Новые теории возникают не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является «воображаемая геометрия» Н. И. Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики . Развитие самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.
В основе построения математической теории лежит аксиоматический метод. В основу научной теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории получаются, как логические следствия аксиом.