Реферат: Равногранный тетраэдр

У любого тетраэдра 4 вершины, 6 рёбер, 4 грани, 4 трёхгранных угла, 6 двугранных углов, 12 плоских углов. Если все 6 рёбер равны, то равными будут и грани, и трёхгранные углы, и плоские; в этом случае тетраэдр - правильный. Из равенства всех 4 граней, однако, ещё не следует правильность тетраэдра; тетраэдр, у которого все грани равны, называется равногранным. Чтобы представить себе равногранный тетраэдр, отличный от правильного, возьмём произвольный остроугольный треугольник из бумаги и будем сгибать его по средним линиям. Тогда три вершины сойдутся в одну точку, а половинки сторон сомкнутся, образуя боковые рёбра тетраэдра (рис. 2).

Перечислим теперь свойства тетраэдра, каждое из которых является необходимым и достаточным условием равногранности, включая определение:

(0) Грани равны.

(1) Скрещивающиеся рёбра попарно равны (2) Трёхгранные углы равны.

(3) Противолежащие двугранные углы равны.

Возможно вы искали - Реферат: Развитие аналитической геометрии

(4) Два плоских угла, опирающиеся на одно ребро, равны.

(5) Сумма плоских углов при каждой вершине равна 180.

(6) Развёртка тетраэдра - треугольник или параллелограмм

(7) Описанный параллелепипед - прямоугольный.

(8) Тетраэдр имеет три оси симметрии.

Похожий материал - Реферат: Различные подходы к определению проективной плоскости

(9) Общие перпендикуляры скрещивающихся рёбер попарно перпендикулярны.

(10) Средние линии попарно перпендикулярны.

(11) Периметры граней равны.

(12) Площади граней равны.

(13) Высоты (тетраэдра) равны. 19=>18

Очень интересно - Реферат: Разработка формальной системы

(14) Отрезки, соединяющие вершины с центром тяжести пртивоположных граней, равны.

(15) Радиусы описанных около граней окружностей равны.

(16) Центр тяжести (тетраэдра) совпадает с центром описанной сферы.

(17) Центр тяжести (тетраэдра) совпадает с центром вписанной сферы.

(18) Центр вписанной сферы совпадает с центром описанной.

Вам будет интересно - Реферат: Численный расчет дифференциальных уравнений

(19) Вписанная сфера касается граней в центрах описанных около них окружностей.

(20) Сумма внешних единичных векторов, перпендикулярных к граням, равна 0 (рис. 4).

(21) Сумма косинусов всех двугранных углов равна 2.

Все перечисленные условия являются одновременно и свойствами и признаками равногранного тетраэдра. Чтобы вывести равногранность из какого-нибудь условия, надо выстроить целую цепочку промежуточных условий, в которой каждое прямое следствие предыдущего.

Проще всего устанавливается, что (0)<=>(1)<=>(2)<=>(3)<=>(4).

Похожий материал - Реферат: Расчет одноступенчатого редуктора

Докажем (0)<=>(1).

    (0)=>(1).

Все грани тетраэдра АВСD равны по условию. Рассмотрим треугольники АDВ и DАС: АD – общая, тогда АВ равна либо DС (если так, то из равенства треугольников АDВ и DАС следует АС=DВ; а из равенства треугольников АDВ и СВD следует АD=ВС, т.е. скрещивающиеся рёбра попарно равны), либо АС (если так, то из равенства треугольников АDВ и DАС следует DВ=DС, т.е. треугольник – равнобедренный, а остальные – нет, т.е. противоречие)

    (0)<=(1).

По условию АВ=DС, ВС=АD, АС=ВD (рис.1), тогда треугольники АВD, СDВ, ВАС равны по третьему признаку равенства.

Докажем (1)<=>(2).

    (1)=>(2).