Содержание
Введение……………………………………..……………………………….…………
Глава 1. Теоретические основы для разработки содержания обучения технологии нейронных сетей……………….………………………………………………………
1.1 Содержание теории нейронных сетей в профильном курсе информатики…….
1.2 Влияние обучения технологии нейронных сетей на развитие мышления школьников……………………………………………………………………………..
Возможно вы искали - Реферат: Изучение файловых систем в профильном курсе информатики
1.3 Теоретические аспекты профильного обучения информатики……….…………
Глава 2. Содержание обучения технологии нейронных сетей……………………….
Заключение………………………………………………………………………………
Список литературы……………………………………………………………………..
Введение
Похожий материал - Реферат: Изучение эмпатии у родителей младших школьников
Вычислительная нейронаука (Computational Neuroscience) в современный момент переживает период перехода от юного состояния к зрелости. Сегодняшний уровень теоретического понимания и практического использования нейронных сетей в мировой информационной индустрии все явственнее требует профессиональных знаний в этой области.
Потребность в специалистах в области нейронных сетей обусловила тот факт, что разнообразные курсы по нейронным сетям начали повсеместно входить в программы высшей школы для различных технических специальностей.
Но этого недостаточно. Необходимо организовывать изучение данной области знания еще в школе. Но в школе обучение должно носить скорее характер ознакомительный и мотивирующий на дальнейшее профессиональное обучение в данной области. Целесообразнее организовывать изучение учениками технологиям нейронным сетям в профильном курсе информатики либо в рамках факультативных занятий.
Учитывая тот факт, что в России почти нет опыта по организации и проведению подобных уроков, данное исследование, будет полезным для учителей, стремящихся овладеть методикой обучения школьников нейросетевым технологиям.
Объектом исследования является процесс изучения информатики в профильном курсе.
Очень интересно - Реферат: Индивидуализация в учебно-воспитательном процессе
Предмет – изучение технологии нейронных сетей в профильном курсе информатики.
Цель: разработать содержание изучения технологии нейронных сетей в профильном курсе информатики.
Для реализации цели курсовой работы необходимо выполнить следующие задачи:
1) отобрать содержание обучения нейронных сетей применительно к профильному курсу;
2) определить влияние обучения технологии нейронных сетей на развитие мышления школьников;
Вам будет интересно - Реферат: Индивидуализация и дифференциация образовательного процесса как условие развития личности современного школьника
3) определить вид профиля и тип учебного предмета для изучения технологии нейронных сетей в школе;
4) разработать содержание изучения темы «Нейронные сети»;
5) разработать тематическое планирование.
Гипотеза: если обучить ученика технологии нейронных сетей, то ученик осознает эффективность применения рациональной стратегии мышления и будет применять эту стратегию в дальнейшем при решении различных задач.
Глава 1 Теоретические основы для разработки содержания обучения технологии нейронных сетей
1.1 Содержание теории нейронных сетей в профильном курсе информатики
Искусственный нейрон
Похожий материал - Реферат: Индивидуализация и внутриклассная дифференциация
Искуственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синоптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис.1
рис.1.Искусственный нейрон |
представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, x3...xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1 , w2 , w3 ...wn , и поступает на суммирующий блок, обозначенный СУМ. Каждый вес соответствует "силе" одной биологической синоптической связи. (Множество весов в совокупности обозначается вектором W). Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом.
NET=XW
Активационные функции
Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT . Активационная функция может быть обычной линейной функцией:
OUT=K(NET)
где К –постоянная, пороговой функцией
OUT=1 ,если NET>T
OUT=0 в остальных случаях,