Реферат: Уравнения Курамото-Цузуки

Дубровский А.Д., Заверняева Е.В.

Введение

На текущий момент разработано ряд математических моделей вида реакции-диффузии:

(Q1, Q2 - нелинейные функции; λ - параметр системы)
(1)

в областях:

Химии

Возможно вы искали - Реферат: Принцип Дирихле

Пример. Автокаталитическая реакция.

Для этой реакции соответствует задача:

Экологии

Похожий материал - Реферат: Генетический алгоритм

Теории морфогенеза

Физики плазмы

Теории горения

Другие

Требуется:

Очень интересно - Дипломная работа: Настоящая теория чисел

классифицировать качественное поведение решения уравнений (1) в зависимости от различных правых частей

классифицировать системы вида (1)

В работе 1975 года Курамото и Цудзуки сделали вывод, что у большинства диссипативных систем существует аналог термодинамической ветви. При всех значениях параметра, исследуемые уравнения имеют однородное по пространству стационарное решение. Это решение устойчиво при λ<λ0 . Поведение решений после потери устойчивости термодинамической ветви (λ>λ0 ) определяется спектром линеаризованной задачи для уравнения (1) в окрестности точки бифуркации λ0 . Уравнение, предложенное Курамото и Цудзуки, описывает поведение в окрестностиλ0 , вида:

(2)

Функция W(R, T) - характеристика отклонения решений системы (1) от пространственно-однородного решения. Таким образом, уравнение (2) описывает только случаи, когда при λ>λ0 решение остается в малой окрестности термодинамической ветви.

Без ограничения общности, в уравнении (2) можно положить с0 =0, в этом можно убедится сделав замену переменных W=W´exp(i c0 t). И так получается, вторая краевая задача при условии, что потоки на границе равны нулю:

(3)

Вам будет интересно - Доклад: Векторы

Упрощенная модель

Предположим, что в изучаемом решении системы (3) есть только две моды:

(4)

Остальными пренебрежем, поскольку коэффициенты Фурье решений быстро убывают с ростом их номера. Коэффициент k будем выбирать так, чтобы выполнялись граничные условия задачи (3), например: k=π/l. Подставим (4) в (3) и отбросим все члены, куда входит cos(πmx/l), m>1, считая, что они пренебрежимо малы.

(5)

Пусть (для удобства), то получается соотношения:

(6)

Сделаем замену переменных в (6)

(7)

Похожий материал - Реферат: Кривизна плоской кривой Эволюта и эвольвента

Двухмодовая система

Рассмотрим систему (7).

Простейшие решения

ξ=0, η=0, θ=2c1 k2 t+const – неустойчивый узел в системе (5).