Реферат: Алгоритм определения динамических характеристик гидроупругих систем для управления гидросооружениями

Рассматриваются методика и алгоритм решения задачи гидроупругости для грунтовых плотин, взаимодействующих с водной средой.

Рассматриваемая проблема представляется актуальной при проектировании гидросооружений, так как включает в себя совершенствование модели сооружения, модели взаимодействия и алгоритмизацию поиска собственных значений системы “плотина-водохранилище”. На сегодняшний день методы исследования задач гидроупругости, т.е. совместных колебаний конструкции и жидкости весьма разнообразны. Применение тех или иных методов решения рассматриваемых задач диктуется многими обстоятельствами: характером задачи, целью исследования, принятой схематизацией явления, требуемой точностью, возможностью вычислительных средств и др.

Изложим постановку и методику решения задач гидроупругости, связанных с определением динамических характеристик упругих грунтовых плотин, взаимодействующих с полубесконечным слоем жидкости. Динамические характеристики (собственные частоты, формы колебаний) являются основными регламентирующими характеристиками (паспортом) сооружений, позволяющими заранее судить о его динамических свойствах и его поведении при различных воздействиях

Опираясь на современные достижения науки в этой области и основываясь на имеющихся материалах по влиянию жидкости на напряженно-деформированное состояние гидротехнических сооружений при динамических и сейсмических воздействиях, при формулировании задачи жидкость считаем идеальной и несжимаемой, волнообразование на свободной поверхности не учитываем. Тогда потенциал скорости движения жидкости должен удовлетворять уравнению Лапласа

(1)

Возможно вы искали - Реферат: Компьютерное моделирование плохо структурируемых экосистем

и граничным условиям [1, 2]:

; и , ; (2)

на напорной грани (где ), скорости частиц жидкости и точек грани плотины по направленнию нормали n одинаковы

(3)

Тогда выражение для потенциала скоростей, удовлетворяющего уравнению (1) и условиями (2)-(3), будет иметь вид [2]

Похожий материал - Реферат: Исследование некоторых задач в алгебрах и пространствах программ

,

,

Далее рассматривается динамическая задача гидроупругости для грунтовых плотин. При этом для постановки задачи используется вариационное уравнение Лагранжа, основанное на принципе Даламбера:

(4)

и кинематическое граничное условие в основании:

Очень интересно - Реферат: Клеточные автоматы и компьютерная экология

, . (5)

Здесь , , - соответственно, компоненты вектора перемещений, тензоров деформаций и напряжений; , - изохронные вариации перемещений и деформаций; -плотность материала элементов рассматриваемой системы; - гидродинамическое давление воды.

Физические свойства тела описываются соотношениями между напряжениями и деформациями вида

(6)

Величины и являются константами Ламе (индекс n относится к телу, с соответствующими механическими характеристиками).

Вам будет интересно - Реферат: Типовые задачи администрирования сети Windows 2000

В соотношении Коши учитываются только линейные члены

, i, j=1,2,3 (7)

Все задачи, поставленные в данной работе, решаются на базе метода конечных элементов (МКЭ). В частном случае, когда рассматриваются гармонические колебания полное смещение и потенциал скорости можно представить в виде

, , (8)

где - упругие перемещения стенки плотины, зависящие только от координаты .

Похожий материал - Реферат: Протокол TELNET

Собственные колебания грунтовой плотины с учетом водной среды водохранилища представляют собой упорядочное движение грунтовой плотины, протекающее при отсутствии внешних воздействий. Решение проблемы заключается в следующем: ищется нетривиальное решение уравнения (4) при однородных кинематических условиях в виде (5).

Постановка (8) в (4) сводит данную задачу к действительной вариационной задаче о собственных значениях в виде

(9)

,