Реферат по дисциплине
ИССЛЕДОВАНИЕ ОПЕРАЦИЙ
на тему
МЕТОД ДЕФОРМИРУЕМОГО МНОГОГРАННИКА
Студент Борзов Андрей Николаевич
Группа АС–513
Преподаватель Ренин Сергей Васильевич
Новосибирск 1997
Поиск по деформируемому многограннику
Возможно вы искали - Реферат: Метод касательных (метод Ньютона)
Впервые метод деформируемого многогранника был предложен Нелдером и Мидом. Они предложили метод поиска, оказавшийся весьма эффективным и легко осуществляемым на ЭВМ. Чтобы можно было оценить стратегию Нелдера и Мида, кратко опишем симплексный поиск Спендли, Хекста и Химсворта, разработанный в связи со статистическим планированием эксперимента. Вспомним, что регулярные многогранники в En являются симплексами. Например, как видно из рисунка 1, для случая двух переменных регулярный симплекс представляет собой равносторонний треугольник (три точки); в случае трёх переменных регулярный симплекс представляет собой тетраэдр (четыре точки) и т.д.
|
Рисунок 1.
Регулярные симплексы для случая двух (а) и трёх (б) независимых переменных.
- обозначает наибольшее значение f(x). Стрелка указывает направление
наискорейшего улучшения.
При поиске минимума целевой функции f(x) пробные векторы x могут быть выбраны в точках En , находящихся в вершинах симплекса, как было первоначально предложено Спендли, Хекстом и Химсвортом. Из аналитической геометрии известно, что координаты вершин регулярного симплекса определяются следующей матрицей D, в которой столбцы представляют собой вершины, пронумерованные от 1 до (n+1), а строчки – координаты, i принимает значения от 1 до n:
– матрица n X (n+1),
где
,
Похожий материал - Реферат: Методическая разработка по C++.(45 страниц)
,
t – расстояние между двумя вершинами. Например, для n=2 и t=1 треугольник, приведённый на рисунке 1, имеет следующие координаты:
| Вершина | x1,i | x2,i |
| 1 | 0 | 0 |
| 2 | 0.965 | 0.259 |
| 3 | 0.259 | 0.965 |
Целевая функция может быть вычислена в каждой из вершин симплекса; из вершины, где целевая функция максимальна (точка A на рисунке 1), проводится проектирующая прямая через центр тяжести симплекса. Затем точка A исключается и строится новый симплекс, называемый отражённым , из оставшихся прежних точек и одной новой точки B, расположенной на проектирующей прямой на надлежащем расстоянии от центра тяжести. Продолжение этой процедуры, в которой каждый раз вычёркивается вершина, где целевая функция максимальна, а также использование правил уменьшения размера симплекса и предотвращения циклического движения в окрестности экстремума позволяют осуществить поиск, не использующий производные и в котором величина шага на любом этапе k фиксирована, а направление поиска можно изменять. На рисунке 2 приведены последовательные симплексы, построенные в двумерном пространстве с «хорошей» целевой функцией.

Рисунок 2.
Последовательность регулярных симплексов, полученных при минимизации f(x).
----- проекция
Определённые практические трудности, встречающиеся при использовании регулярных симплексов, а именно отсутствие ускорения поиска и трудности при проведении поиска на искривлённых «оврагах» и «хребтах», привели к необходимости некоторых улучшений методов. Далее будет изложен метод Нелдера и Мида, в котором симплекс может изменять свою форму и таким образом уже не будет оставаться симплексом. Именно поэтому здесь использовано более подходящее название «деформируемый многогранник».
В методе Нелдера и Мида минимизируется функция n независимых переменных с использованием n+1 вершин деформируемого многогранника в En . Каждая вершина может быть идентифицирована вектором x. Вершина (точка) в En , в которой значение f(x) максимально, проектируется через центр тяжести (центроид) оставшихся вершин. Улучшенные (более низкие) значения целевой функции находятся последовательной заменой точки с максимальным значением f(x) на более «хорошие точки», пока не будет найден минимум f(x).
Очень интересно - Реферат: Методические указания по микропроцессорным системам
Более подробно этот алгоритм может быть описан следующим образом.
Пусть
, является i-й вершиной (точкой) в En на k-м этапе поиска, k=0, 1, …, и пусть значение целевой функции в x(k) i равно f(x(k) i ). Кроме того, отметим те векторы x многогранника, которые дают максимальное и минимальное значения f(x).
Определим
![]()
![]()
![]()
Поскольку многогранник в En состоит из (n+1) вершин x1 , …,xn+1 , пусть xn+2 будет центром тяжести всех вершин, исключая xh .
Вам будет интересно - Реферат: Методы и модели интеллектуального автоматизированного контроля знаний
Тогда координаты этого центра определяются формулой
(1)
где индекс j обозначает координатное направление.
Начальный многогранник обычно выбирается в виде регулярного симплекса (но это не обязательно) с точкой 1 в качестве начала координат; можно начало координат поместить в центр тяжести. Процедура отыскания вершины в En , в которой f(x) имеет лучшее значение, состоит из следующих операций:
1. Отражение – проектирование x(k) h через центр тяжести в соответствии с соотношением
(2)
где a>0 является коэффициентом отражения;
– центр тяжести, вычисляемый по формуле (1);
– вершина, в которой функция f(x) принимает наибольшее из n+1 значений на k-м этапе.
2. Растяжение . Эта операция заключается в следующем: если
, то вектор
растягивается в соответствии с соотношением
(3)
где g>1 представляет собой коэффициент растяжения. Если
, то
заменяется на
и процедура продолжается снова с операции 1 при k=k+1. В противном случае
заменяется на
и также осуществляется переход к операции 1 при k=k+1.
Похожий материал - Реферат: Методы приобретения знаний в интеллектуальных системах
3. Сжатие . Если
для всех i¹h, то вектор
сжимается в соответствии с формулой
(4)
где 0<b<1 представляет собой коэффициент сжатия. Затем
заменяем на
и возвращаемся к операции 1 для продолжения поиска на (k+1)-м шаге.
4. Редукция . Если
, все векторы
уменьшаются в 2 раза с отсчётом от
в соответствии с формулой
(5)
Затем возвращаемся к операции 1 для продолжения поиска на (k+1)-м шаге.
Критерий окончания поиска, использованный Нелдером и Мидом, состоял в проверке условия
(6)
где e – произвольное малое число, а
– значение целевой функции в центре тяжести
.