Реферат: Позиционные системы счисления

Ученицы

11 класса «А»

Калашниковой Анны

МОСКВА 2004 год

План

1) Арифметические основы построения ЭВМ

2) Непозиционные и позиционные системы счисления

Возможно вы искали - Реферат: Поиск информации в www

3) Непозиционные системы счисления

4) Позиционные системы счисления

5) Системы счисления

6) Десятичная система счисления

7) Двоичная система счисления

Похожий материал - Реферат: Поисковые машины в Интернет

8) Восьмеричная система счисления

9) Шестнадцатиричная система счисления

10) Перевод из одной системы счисления в другую

11) Перевод целых чисел

12) Перевод правильных дробей

Очень интересно - Реферат: Поисковые системы Интернета

13) Правила перевода из системы счисления в систему счисления

14) Представление чисел в различных системах счисления

15) Вопросы и задачи. Ответы и решения.

16) Средства процессора Word, используемые в данной работе.

17) Список литературы.

Арифметические основы построения ЭВМ

Вам будет интересно - Реферат: Полиморфные вирусы

Непозиционные и позиционные системы счисления

Системой счисления называется совокупность правил для обозначения (записи) действительных чисел с помощью цифровых знаков. Для записи чисел в конкретных системах счисления используется некоторый конечный алфавит, состоящий из цифр а1 , а2, а3,….,аn. При этом каждой цифре аi в записи числа ставится в соответствие определенный количественный эквивалент. Различают непозиционные и позиционные системы счисления.

Непозиционные системы счисления

В ней количественный эквивалент каждой цифры, входящей в запись данного числа, не зависит от места (позиции) этой цифры в ряду других цифр. Пример: римская система счисления. В ней для записи различных целых чисел используются символы I, V, X, L, C, D, M и т.д., обозначающие соответственно 1, 5, 10, 50, 100, 500, 1000 и т.д. Например, запись MCMLXXXV означает число 1985. Общим недостатком непозиционных систем является сложность представления в них достаточно больших чисел, так как при этом получается чрезвычайно громоздкая запись чисел или требуется очень большой алфавит используемых цифр. В ЭВМ применяют только позиционные системы счисления, в которых количественный эквивалент каждой цифры алфавита зависит не только от вида этой цифры, но и от ее местоположения в записи числа.

Позиционные системы счисления

Похожий материал - Реферат: Полная параллельная поддержка для систем планирования, основанных на случаях

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число. Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.

Системы счисления

Десятичная система счисления.

Пришла в Европу из Индии, где она появилась не позднее VI века н.э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т.д. Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д. Позиции цифр в записи числа называют его разрядами. В десятичной системе счисления вес каждого разряда в 10 раз больше веса предыдущего. Всякое число в десятичной системе счисления можно представить в виде суммы различных целых степеней десяти с соответствующими коэффициентами аi (0-9), взятыми из алфавита данной системы счисления. Например: 245,83 = 2 * 102 + 4 * 101 + 5 * 100 + 8 * 10-1 + 3 * 10-2. Любое десятичное позиционное число N можно представить с помощью целых степеней десяти, взятых с соответствующими коэффициентами, т.е.

N10 = am * 10m + am-1 * 10m-1 + …+ a1*10+ +a0 * 100 + a-1 * 10-1 +…+ a-n * 10-n.