Выполнил:
Студент группы 4031
_______Галинко В.Ю.
«___»_____________1999
Проверил:
Возможно вы искали - Реферат: Изобретение радио Поповым
Преподаватель каф. ФТТиМ
_______Крутяков.Л.Н.
«___»_____________1999
Новгород
1999
Содержание
Введение | 3 |
1. Основные структуры ИМС АЦП | 4 |
2. Характеристики ИМС АЦП | 7 |
3. Контроль статических параметров ИМС АЦП | 13 |
4. Контроль динамических параметров ИМС АЦП | 19 |
Список использованных источников | 23 |
Введение
Цифро-аналоговые и аналого-цифровые преобразователи АЦП находят .широкое применение в различных областях современной науки и техники. Они являются неотъемлемой составной частью цифровых измерительных приборов, систем преобразования и отображения информации, программируемых источников питания, индикаторов на электронно-лучевых трубках, радиолокационных систем, установок для контроля элементов и микросхем, а также важными компонентами различных автоматических систем контроля и управления, устройств ввода—вывода информации ЭВМ. На их основе строят преобразователи и генераторы практически любых функций, цифроуправляемые аналоговые регистрирующие устройства, корреляторы, анализаторы спектра и т. д. Велики перспективы использования быстродействующих преобразователей в телеметрии и телевидении. Несомненно, серийный выпуск малогабаритных и относительно дешевых АЦП еще более усилит тенденцию проникновения метода дискретно-непрерывного преобразования в сферу науки и техники. Одним из стимулов развития цифро-аналоговых и аналого-цифровых преобразователей в интегральном исполнении в последнее время является широкое распространение микропроцессоров и методов цифровой обработки данных. В свою очередь потребность в АЦП стимулирует их разработку и производство с новыми, более совершенными характеристиками. В настоящее время применяют три вида технологии производства АЦП: модульную, гибридную и полупроводниковую. При этом доля производства полупроводниковых интегральных схем (ИМС ЦАП и ИМС АЦП) в общем объеме их выпуска непрерывно возрастает и в недалеком будущем, по-видимому, в модульном и гибридном исполнениях будут выпускаться лишь сверхточные и сверхбыстродействующие преобразователи с достаточно большой рассеиваемой мощностью.
В данной главе рассматриваются основные структуры, характеристики и методы контроля интегральных микросхем АЦП.
1 Основные структуры ИМС АЦП
Похожий материал - Реферат: Изучение и исследование интегрированных RS-триггеров, а также триггеров серии К155
|
Рис. 1. Обобщенная структурная схема АЦП |
Обобщенная структурная схема АЦП (рис.1) представляет собой дискретизирующее устройство ДУ, тактирующее работу квантующего КвУ и кодирующего КдУ устройств. На вход квантующего устройства поступает преобразуемый сигнал x(t), а с выхода кодирующего устройства снимается дискретный сигнал ДС, который для АЦП в интегральном исполнении обыччно имеет форму двоичного параллельного кода. В результате равномерного квантования мгновенное значение xi непрерывной величины x(t) представляется в виде конечного числа п ступеней квантования Δх:
Xi=nΔx=x ±Δk,
где Δk - погрешность квантования, обусловленная тем, что преобразуемая величина х может содержать нецелое число п ступеней квантования Δх.
Максимально возможная погрешность квантования (погрешность дискретности) определяется ступенью квантования, т. е.
Очень интересно - Реферат: Изучение режимов работы диодов и транзисторов в электронных схемах
Δkmax = Δx
Для известного диапазона xmax максимально возможное число дискретных значений преобразуемого сигнала х (включая х==0)
nmax =(xmax / Δx+1)
При этом, как правило, погрешность квантования не должна превышать общую погрешность преобразования.
Следовательно, если известно значение допустимой относительной погрешности преобразования γmaх , то при определении ступени квантования необходимо учитывать соотношение
Δx ≤ (γmaх /100)* xmax
Вам будет интересно - Реферат: Интранет сети
Кроме того, следует учитывать, что АЦП обладают определенным порогом чувствительности Хп.ч, т. е. способностью вызывать изменение выходной информации преобразователя при воздействии на его вход наименьшего значения преобразуемого сигнала. Поэтому значение Δx должно превышать Хп.ч и удовлетворять неравенству
Хп.ч < Δx ≤ (γmaх /100)* xmax
Реализацию обобщенной структуры можно осуществить различными способами, которые рассмотрены ниже. Независимо от способа построения АЦП всем им присуща методическая погрешность, обусловленная погрешностью квантования Δx.
В зависимости от области применения АЦП их основные характеристики (точность, разрешающая способность, быстродействие) могут существенно отличаться. При использовании АЦП в измерительных устройствах главную роль играет точность преобразования, а быстродействие этих устройств ограничено реальной скоростью регистрации результата измерения. При использовании АЦП в качестве устройства ввода измерительной информации в ЭВМ от него требуется быстродействие в большей степени.
Широкое применение АЦП в различных областях науки и техники явилось предпосылкой создания разных структур АЦП, каждая из которых позволяет решить определенные задачи, предъявляемые к АЦП в каждом конкретном случае. Из всего многообразия существующих методов аналого-цифрового преобразования в интегральной технологии нашли применение в основном три:
1) метод прямого (параллельного) преобразования;
Похожий материал - Реферат: Ионосфера и распространение радиоволн
2) метод последовательного приближения (поразрядного уравновешивания);
3) метод интегрирования.
Каждый из этих методов позволяет добиться наилучших параметров (быстродействия, разрешающей способности, помехоустойчивости и т. д.). Потребность в АЦП с оптимальными параметрами или с отдельными экстремальными параметрами обусловила появление структур преобразователей, использующих комбинацию перечисленных методов. Рассмотрим структурные схемы АЦП, нашедших наибольшее распространение в интегральной технологии.
В АЦП с параллельным преобразованием входной сигнал прикладывается одновременно ко входам всех компараторов. В каждом компараторе он сравнивается с опорным сигналом, значение которого эквивалентно определенной кодовой комбинации. Опорный сигнал снимается с узлов резистивного делителя, питаемого от источника опорного напряжения. Число возможных кодовых комбинаций (а следовательно, число компараторов) равно 2m — 1, где т— число разрядов АЦП. АЦП прямого преобразования обладают самым высоким быстродействием среди других типов АЦП, определяемым быстродействием компараторов и задержками в логическом дешифраторе. Недостатком их является необходимость в большом количестве компараторов. Так, для 8-разрядного АЦП требуется 255 компараторов. Это затрудняет реализацию многоразрядных (свыше 6—8-го разрядов) АЦП в интегральном исполнении. Кроме того, точность преобразования ограничивается точностью и стабильностью каждого компаратора и резистивного делителя. Тем не менее на основе данного принципа строят наиболее быстродействующие АЦП со временем преобразования в пределах десятков и даже единиц наносекунд, но ограниченной разрядности (не более шести разрядов).