Содержание
Введение.................................................................................................. | 3 |
1Основные особенности лавинно-пролетных диодов......................... | 4 |
2 Диоды с полевой эмиссией.................................................................. | 9 |
3 Принцип работы ЛПД.......................................................................... | 15 |
Заключение.............................................................................................. | 19 |
Список использованной литературы..................................................... | 20 |
ВВЕДЕНИЕ
Настоятельная необходимость миниатюризации аппаратуры СВЧ, повышение ее экономичности и надежности вызвала быстрый рост рабочих частот полупроводниковых приборов. Наряду с большими успехами в технологии транзисторов этому способствовало открытие новых физических явлений в полупроводниках, сделавшее возможным разработку приборов, адекватных СВЧ диапазону.
Одним из первых явлений такого рода было обнаруженное СВЧ излучение при ударной ионизации в р-п переходах, послужившее основой для создания в 1959 г. новых СВЧ приборов—лавинно пролетных диодов (ЛПД).
На базе ЛПД создаются и быстро совершенствуются разнообразные приборы и устройства, в первую очередь генераторы когерентных и шумовых колебаний сантиметрового и миллиметрового диапазонов. Малые габариты и вес, экономичность, виброустойчивость и т. п. позволяют отнести генераторы на ЛПД к числу наиболее перспективных источников электромагнитных колебаний СВЧ, открывающих широкие возможности развития СВЧ микросхемотехники.
Возможно вы искали - Реферат: Лазер
1 ОСНОВНЫЕ ОСОБЕННОСТИ ЛАВИННО-ПРОЛЕТНЫХ ДИОДОВ
Характерной особенностью развития современной радиотехники является быстрое продвижение полупроводниковых приборов в область сверхвысоких частот. Прогресс в этом направлении был достигнут в результате значительного усовершенствования технологии изготовления высокочастотных транзисторов, разработки туннельных диодов и диодов с переменной емкостью (варакторов). Хотя все эти приборы появились совсем недавно, они уже широко применяются в диапазоне СВЧ в качестве элементов высокочувствительных приемных устройств и умножительных цепочек. Однако до последнего времени не удавалось создать эффективного автогенератора сантиметровых волн, который мог бы служить твердотельным эквивалентом одного из основных электровакуумных приборов СВЧ — отражательного клистрона.
Этот пробел в значительной мере восполняет новый полупроводниковый СВЧ прибор — лавинно-пролетный диод (ЛПД), являющийся основой целого класса СВЧ устройств; генераторов, усилителей и преобразователей частоты.
В процессе исследования зависимости коэффициента преобразования частоты в диапазоне СВЧ на параметрических полупроводниковых диодах от величины приложенного к диоду постоянного смещения и мощности накачки было установлено, что при больших значениях обратного напряжения, превышающих пробивное, некоторые из диодов генерировали СВЧ колебания и в отсутствие сигнала накачки.
Диффузионные диоды с меза-структурой и одним р-п переходом, сформированным путем диффузии мышьяка в германий р-типа, легированный галлием (рис. 1).
Похожий материал - Реферат: Лазер
Рис. 1. Структура диода.
Рис. 2. Схема включения ЛПД в цепь постоянного тока.
Диод помещали в высокочастотный резонатор и включали в цепь постоянного тока, как показано на рис. 2. Генерация СВЧ колебаний наблюдалась при отрицательных напряжениях, на 0,5—1,5 В, превышающих пробивное напряжение, когда через диод проходил постоянный ток от 0,5 до 10—15 мА. Мощность колебаний в непрерывном режиме составляла для различных диодов величину от десятков микроватт до нескольких милливатт. Спектр колебаний в зависимости от тока, текущего через диод, и настройки резонатора изменялся от близкого к шумовому до почти монохроматического. Длина волны колебаний лежала в пределах от 0,8 до 10 см и зависела от размеров резонатора и значений реактивных параметров диодов. Перестраивая резонатор (например, перемещением короткозамыкающего плунжера), можно было плавно изменять частоту и мощность колебаний. В недовозбужденном режиме вблизи порога генерации наблюдалось регенеративное усиление СВЧ колебаний с коэффициентом усиления 15—20 дб. Диоды на которых были получены генерация и усиление СВЧ колебаний, как правило, не давали заметной паразитной генерации на более низких частотах, хотя не принималось специальных мер для ее подавления.
Рис 3. Обратная ветвь вольтамперной характеристики ЛПД
Уже первые эксперименты показали, что основным признаком генерирующих диодов, является форма обратной ветви их вольтамперной характеристики, показанной на рис. З сплошной линией. Как видно из рисунка, особенностью этой характеристики является резкий излом при пробивном напряжении U пр . При отрицательных напряжениях, меньших (по абсолютной величине) Uпр , ток, текущий через диод (ток насыщения), очень мал и составляет для различных диодов от 0,01 до 1 мкA. При U =U np вольтамперная характеристика претерпевает резкий излом, ток резко возрастает и при дальнейшем увеличении отрицательного смещения растет почти линейно с напряжением. Максимальное значение постоянного тока диода ограничивалось опасностью теплового пробоя, выводящего диод из строя.
Очень интересно - Реферат: Лазерная безопасность
Наклон вольтамперной характеристики на рабочем участке был всюду положительным и соответствовал положительному дифференциальному сопротивлению R д слабо зависящему от тока и лежащему для различных диодов в интервале 50—300 Ом.
Вольтамперная характеристика негенерировавших диодов, как правило, отличалась более или менее плавным увеличением тока вблизи пробивного напряжения (штриховая кривая рис. З) и большим значением дифференциального сопротивления R д на этом участке. На некоторых диодах при U >U пр наблюдались скачки тока, соответствующие участкам вольтамперной характеристики с отрицательным наклоном. Эти диоды в ряде случаев давали низкочастотную генерацию (1—10 кГц), но, как правило, не генерировали СВЧ колебания.
Последующие эксперименты показали, что подобные же явления (генерация СВЧ колебаний) могут наблюдаться и на диодах другой структуры: диффузионных на базе n-германия, сплавных германиевых диодах с резким р-п переходом, диффузионных и сплавных кремниевых диодах и т. д.
Таким образом, была установлена возможность эффективной (с КПД > 1%) генерации, а также усиления СВЧ колебаний полупроводниковым диодом, вольтамперная характеристика которого не имеет «падающих» участков или, иначе говоря, не имеет «статического» отрицательного сопротивления.
Физическая природа этого динамического отрицательного сопротивления связана с процессом ударной ионизации в р-п переходе и с взаимодействием образованной при этом лавины свободных носителей тока (электронов и дырок) с высокочастотным полем в слое объемного заряда (запойном слое) обратно смещенного р-п перехода. Действительно, известно два основных механизма резкого возрастания тока в обратно смещенном р-п переходе — лавинный пробой вследствие ударной ионизации атомов кристалла подвижными электронами и дырками и эффект Зинера — туннельный переход носителей заряда из заполненной зоны одного полупроводника в свободную зону другого. Эффект Зинера проявляется лишь в достаточно узких р-п переходах с напряжением пробоя меньше 5 В для германия. В нашем случае это напряжение превышало 20 В, так что возрастание тока можно было целиком отнести за счет ударной ионизации. Исследования подтвердили это предположение, и диоды, в которых наблюдался эффект генерации СВЧ колебаний, были названы лавинно-пролетными.
Вам будет интересно - Реферат: Лазерные оптико-электронные приборы
2 ДИОДЫ С ПОЛЕВОЙ ЭМИССИЕЙ
Диоды с динамическим отрицательным сопротивлением известны в вакуумной электронике уже 60 лет. Л. Левеллин экспериментально показал возможность создания на основе такого диода генератора СВЧ. Схема подобного генератора включает диодный промежуток, ограниченный двумя электродами — катодом и анодом, к которым приложена постоянная U 0 и переменная U ~ разности потенциалов, и внешний колебательный контур.
С термоэмиссионного катода в диодный промежуток поступает немодулированный поток электронов. Под действием переменного поля скорость электронов изменяется, и первоначально однородный электронный поток группируется. При этом средняя (за период) энергия взаимодействия электронов с переменным полем оказывается отличной от нуля и зависящей от угла пролета электронов в диоде q = wt (t—время пролета электронов). В определенных интервалах значений угла пролета
2pn < q < (2n + 1) (n = 1, 2, ...).
Эта энергия отрицательна, т. е. происходит трансформация кинетической энергии электронов в энергию высокочастотного поля. В соответствующих диапазонах частот активное сопротивление диода отрицательно.
Похожий материал - Реферат: Лазерные телевизоры
Однако поскольку группировка электронов и отбор высокочастотной мощности происходят в одном и том же пролетном пространстве при отсутствии в этом пространстве замедленных электромагнитных волн, эффективность такого взаимодействия невелика и абсолютная величина активного сопротивления диода много меньше величины его реактивного (емкостного) сопротивления. Поэтому для создания автогенератора в СВЧ диапазоне приходится подключать к диоду внешний контур с высокой добротностью и снимать с катода очень большие плотности тока. В связи с этим реализация подобных генераторов встретила значительные трудности и они не нашли практического применения.
Между тем существует принципиально простой способ резкого повышения эффективности диодных генераторов. Он заключается в замене модуляции электронов по скорости модуляцией по току на входе в диодный промежуток.
Допустим, что вместо термоэмиссионного катода в диоде используется какой-либо тип автоэмиссионного катода с достаточно резкой зависимостью тока эмиссии от напряженности электрического поля. В этом случае выходящий из катода поток электронов будет модулирован по плотности с частотой приложенного напряжения.
Активное сопротивление такого диода может принимать отрицательные значения и при отсутствии дополнительной группировки электронов в диодном промежутке. Это хорошо видно на пространственно-временной диаграмме движения электронов в диоде с полевой эмиссией, изображенной на рис. 4а. Сгустки электронов, вырванные из катода в моменты максимума высокочастотного поля, движутся сначала в ускоряющем, а затем в тормозящем поле, и, если угол пролета между катодом и анодом превышает p, активное сопротивление диода отрицательно и достигает максимальной величины при q » 3/2 p (рис. 1.2,а). Дополнительная группировка электронов за счет модуляции по скорости в диодном промежутке играет при этом второстепенную роль. Как условия возбуждения, так и к. п. д. такого генератора могут быть значительно лучшими, чем у диодных генераторов со скоростной модуляцией электронов.