Успехи в области генетической инженерии растений открыли новые возможности для получения рекомбинантных белков. Для этой цели широко используются клетки бактерий, дрожжей, млекопитающих и насекомых. Однако такие системы имеют ряд существенных недостатков. В клетках прокариот не происходят посттрансля-ционная модификация и правильная укладка (фолдинг) полипептидных цепей многих эукариотических белков. Клетки дрожжей, млекопитающих и насекомых лишены подобных недостатков, но их использование в качестве биопродуцентов ограничено высокой себестоимостью выхода рекомбинантных белков (Russel, Clarke, 1999).
По сравнению с вышеупомянутыми системами экспрессии растения имеют ряд особенностей и преиму-ществ. Прежде всего необходимо отметить, что в клетках высших растений происходят гликозилирование и фолдинг белков, сходные с таковым в клетках млекопитающих. Культивирование растений не требует доро-гостоящего оборудования, а сельскохозяйственные масштабы продукции гарантируют доступность реком-бинантного препарата в количествах, достаточных для клинических испытаний и широкого терапевтического использования. В отличие от животных, растительные клетки не содержат в своём составе патогенные для человека вирусы, а также прионы и, таким образом, могут служить безопасным источником рекомбинантных белков медицинского назначения. Хотя стоимость выделения и очистки целевого белка из растений-продуцентов может быть сопоставима с таковой для других систем, наработка сырого материала обходится значительно дешевле. В ряде случаев, например, при использовании трансгенных растений в качестве "съедобных вакцин" выделение белка в чистом виде не требуется. В дополнение ко всему перенос фраг-ментов экзогенной ДНК в растительный геном и регенерация у растений происходят значительно проще по сравнению с животными (Daniell et al., 2001).
Известно, что аппарат транскрипции и трансляции у растений является универсальным и может быть адап-тирован не только для накопления гомологичных белков, не синтезируемых данным видом растения, но и для синтеза гетерологичных белков как бактериального, так и животного происхождения. С другой стороны, сами растения in vivo могут служить благоприятной средой для развития различных организмов - бактерий и вирусов, геном которых может быть модифицирован и адаптирован для синтеза соответствующих гетерологич-ных белков. Анализируя данные литературы, необходимо отметить, что поиск различных систем для экспрессии чужеродных генов за последние десять лет был связан с развитием трёх основных подходов.
Первым из них был предложен путь использования трансгенных растений, в ядерный геном которых перене-сены гены, контролирующие синтез соответствующих гетерологичных белков (De la Riva, 1998). Получение таких растений было основано на природной способности почвенной бактерии Agrobacterium tumefaciens переносить часть своей собственной ДНК в виде Т-области мегаплазмиды в растительные клетки. Именно эта часть Ti-плазмиды была использована учёными для переноса генно-инженерных конструкций, включающих различные целевые гены. В качестве целевых можно было использовать и гены гетерологичных белков меди-цинского назначения. Необходимо отметить, что использование только агробактериального переноса в значи-тельной степени сужало круг растений-реципиентов и ограничивало его, как правило, до двудольных. Поэтому дальнейшее развитие идеи использования растительного генома для синтеза гетерологичных белков стимули-ровало поиск новых способов переноса фрагментов экзогенной ДНК в геном растений. Были разработаны мето-ды прямой доставки чужеродных генов в растительный геном, такие, как микроинъекции (Neuhaus et al. , 1987), электропорация (Fromm et al. , 1985) и методы биобаллистики (Klein et al. , 1987). В этом слу-чае для переноса использовалась очищенная плазмидная ДНК, в которой содержались генетические конструк-ции с целевыми генами.
При переносе в геном растения чужеродные гены, как правило, стабильно интегрируются и передаются по-томкам в последующих поколениях согласно законам Менделя (Horsch et al., 1984; Budar et al. , 1986; De-roles, Gardner, 1988; Heberle-Bors et al. , 1988).
Возможно вы искали - Реферат: Возвращение карельской пестрой норки
Хотя идея внедрения экзогенной ДНК в растительный геном для наработки соответствующих продуктов в растении представляется весьма перспективной, этот подход не лишен и некоторых недостатков. Среди них не-обходимо отметить низкий уровень экспрессии перенесенных генов, даже при использовании очень сильных промоторов. Содержание сывороточного альбумина человека в трансгенных тканях табака составило 0,02 % от суммарного белка (Sijmons et al. , 1990). Ещё меньшие значения были получены для эритропоэтина (0,003 %) и b-интерферона (0,001 %) (Edelbaum, 1992; Kusnadi et al. , 1997). Одной из причин этого, по-видимому, является увеличение скорости деградации мРНК чужеродно-го гена, когда её уровень достигает порогового значения. Этот механизм, возможно, служит одним из способов защиты растения от РНК-содержащих вирусов (Matzke et al. , 1994; Matzke M., Matzke A., 1995; Vaucheret, 2001). Второй причиной низкого уровня продукции является протеолиз чужеродных белков в цитоплазме расти-тельной клетки. Введение в полипептидную цепь целевого белка сигнальных последовательностей, направляю-щих его накопление в эндоплазматической сети или секрецию в апопласт, где частота протеолиза значительно ниже, позволяет достичь повышения продуктивности трансгенных растений в 100 раз (Giddings et al. , 2000; Menassa et al. , 2001). Экспрессия целевых белков в запасной ткани семян, где уровень биодеградации ниже, чем в обводнённых тканях (листья, плоды), способствует повышению продуктивности на 2-3 порядка. Так, содер-жание химерного энкефалина человека в семенах трансгенного A. thaliana составило 2,9 % от суммарного белка. Этого удалось достичь введением в полипептидную цепь энкефалина сигнальной последовательности глю-телина (запасного белка риса), направляющей его транспортировку в компартменты накопления запасных белков. Химерный ген находился под контролем промотора гена глютелина, который направлял его тканеспецифичную транскрипцию в клетках запасной ткани семян (Vandekerckhove et al. , 1989).
Интеграция чужеродных генов в ядерный геном растения сопряжена и с рядом проблем биобезопасности использования генетически модифицированных организмов. При получении трансгенных растений в сель-скохозяйственных масштабах существует опасность утечки трансгена в окружающую среду (выход из-под контроля) в результате переопыления с близкородственными дикорастущими видами. Для повышения уров-ня биобезопасности рядом исследователей было предложено использовать для трансгенеза стерильные по мужской линии растения (Menassa et al. , 2001).
Другой проблемой, возникающей при интеграции гетерологичных генов в ядерный геном растений, явля-ется вероятность "замолкания" трансгенов в последующих поколениях (сайленсинг). Вероятность сайлен-синга резко возрастает при встраивании множества копий чужеродного гена на геном растения (Finnegan, McElroy, 1994; Matzke et al. , 1994; Matzke М., Matzke А., 1995). Поэтому при создании трансгенных растений-биопродуцентов рекомбинантных белков среди трансформантов отбирают растения, содержащие только одну встройку чужеродного гена.
В связи с вышеперечисленными проблемами, возникающими при интеграции трансгенов в ядерный ге-ном, весьма привлекательным представляется способ переноса экзогенной ДНК в геном хлоропластов. Хлоропласты - органеллы растительной клетки, содержащие зеленый пигмент хлорофилл, а также ряд дру-гих пигментов, принимающих участие в поглощении световой энергии и осуществлении фотохимических реак-ций. По форме и размерам хлоропласты высших растений достаточно однородны. Некоторая вариабельность наблюдается в отношении их числа в расчете на одну клетку, которое варьирует от нескольких десятков до сот-ни и более. Каждый отдельный хлоропласт окружен двойной мембраной и имеет сложную внутреннюю структу-ру. В одной растительной клетке в среднем содержится от 5 до 10 тыс. копий хлоропластной ДНК, за счёт чего уровень экспрессии чужеродных белков достигает значений, сравнимых с уровнем экспрессии в E. coli (до 40 % от суммарного белка клетки) (Staub et al. , 2000; De Cosa et al. , 2001). Однако в литературе встречаются только единичные работы по получению растений с генетически модифицированными хлоропла-стами. Это связано с чрезвычайной сложностью методов их трансформации и последующего отбора.
Третий путь использования растений для накопления белков гетерологичного происхождения основан на природной способности растительных вирусов проникать в клетки растений и колонизировать растительные тка-ни (Mushegian, Shepherd, 1995). На этой основе возникает реальная возможность модификации вирусного гено-ма и адаптации его не только в качестве вектора для доставки в растения соответствующих генетических конст-рукций, но и в качестве матриц для транзиентной экспрессии генов, кодирующих синтез белков, представляющих коммерческий интерес. Для заражения растительных тканей используются рекомбинантные (+)РНК-содержащие вирусы растений, несущие в составе своего генома транскрипт чужеродного гена (Mushegian, Shepherd, 1995). Скорость мультипликации вирусной РНК в растениях чрезвычайно высока, за счёт чего достигается высокая ко-пийность транскриптов чужеродных генов в цитоплазме заражённых клеток. Поэтому продуктивность вирусной системы экспрессии в среднем на 2 порядка выше по сравнению со стабильной трансформацией растений (Giddings et al. , 2000).
Похожий материал - Шпаргалка: К гербарию по практическим занятиям по курсу луговодство
В настоящее время широко используются два вида вирусов для продукции чужеродных белков в растениях: ви-рус табачной мозаики (ВТМ) и вирус мозаики коровьего гороха (ВМКГ). Вектор на основе РНК ВТМ использовался для получения ингибитора репликации ВИЧ α-трихосантина в Nicotiana benthamiana (Kumagai et al. , 1993). Для этого целевую последовательность, кодирующую α -трихосантин, поместили под субгеномный промотор белка оболочки ВТМ. Спустя две недели после заражения рекомбинантный α -трихосантин накапливался в листьях N. Benthamianaв количестве 2 % от суммарного белка. На основе ВМКГ удалось получить химерные частицы этого вируса с экспонированными на поверхности антигенными детерминантами ВИЧ1 (gp41) (Porta et al. , 1996). Для этого последовательность эпитопа gp41 была "сшита" с геном белка оболочки ВМКГ. Такие частицы обладали высокой иммунногенностью и были способны нейтрализовать инфекционные свойства ВИЧ1 in vivo.
Сравнивая пути наработки гетерологичных белков в растительных тканях, необходимо отметить, что каждый из них имеет свои преимущества и недостатки. В трансгенных растениях перенесенные гены стабильно встраиваются в геном и сохраняются в последующих поколениях, тогда как при интеграции генов в геном вирусов в зараженных вирусами растениях обеспечивается их временная (транзиентная) экспрессия. Накопление соответствующих бел-ковых продуктов будет определяться периодом вегетации зараженного растения-хозяина. С другой стороны, пре-имуществом вирусного пути накопления белков в растениях является короткий период размножения вирусных час-тиц, простота инфицирования растений, а также широкий диапазон различных видов растений, которые могли бы быть использованы для этих целей.
Растения-продуценты антител
Цель иммунизации организма вакцинами - индуцировать продукцию антител на патогенный агент. Альтерна-тивой такому подходу является метод пассивной иммунизации, основанный на введении готовых иммуноглобу-линов. Широкое применение такого подхода долгое время было ограничено высокой стоимостью антител, полу-чаемых традиционными способами. В 1989 г. была показана возможность сборки функционально активных им-муноглобулинов класса IgG и IgA из лёгкой и тяжёлой цепей в растениях табака (Hiatt et al. , 1989). С того момента в нескольких крупных лабораториях мира были получены трансгенные растения-продуценты различных типов антител к эпитопам ряда патогенных агентов. В таблице 1 представлена сводка этих результатов.
Таблица 1
Растения-продуценты антител
Применение и специфичность | Класс антител | Растение-продуцент | Уровень продукции | Лит. ссылка |
Зубной кариес; стрептококковый антиген | IgA-IgG | Табак | 500 мкг/г сырого веса | Ma et al. 1995, 1998 |
Вирус простого герпеса 2 | IgG | Соя | Нет данных | Zeitlin et al. 1998 |
Диагностика ряда заболеваний; антитела, специфичные к IgG человека | IgG | Люцерна | 1 % суммарного белка | Khoudi et al. 1999 |
Терапия рака; раковый эмбриональный антиген | ScFv |
Очень интересно - Реферат: Антропология Пшеница Рис |
900 нг/г сырого веса (листья) 1,5 мкг/г сырого веса (семена) 29 мкг/г сырого веса (листья) Вам будет интересно - Реферат: Биологически мембраны 32 мкг/г сырого веса (семена) | Stoger et al. 2000; Torres et al. 1999 |
Как видно из таблицы 1, к настоящему времени получены трансгенные растения табака, люцерны, пшеницы, риса и сои. Среди этих растений выделяются две группы: продуценты иммуноглобулинов к антигенам двух пато-генных агентов (стрептококк и вирус простого герпеса второго типа) и антител, специфичных к раковому эмбрио-нальному антигену и к IgG человека.
Анализируя уровень экспрессии перенесённых генов в геноме растений-биопродуцентов антител, можно отме-тить, что уровень продуктивности иммуноглобулина к поверхностному антигену Staphylococcus mutants в растениях табака оказался наиболее высоким и составил 500 мкг/г сырого веса (табл. 1). Такие антитела, выделен-ные из трансгенных растений табака, предупреждали развитие кариеса у пациентов при непосредственном нане-сении их на зубную эмаль и не уступали по своим свойствам аналогичным антителам, получаемым из гибридомы мышей.
Иммуноглобулины к раковому эмбриональному антигену были получены в трансгенных растениях риса и пшеницы (табл. 1). Такие антитела используются в иммунотерапии онкологических заболеваний, а также для визуализации опухоли in vivo.
Трансгенные растения рассматриваются как потенциальный недорогой источник иммуноглобулинов для ме-дицинских и исследовательских целей. На рисунке представлена динамика стоимости одного грамма чистого IgA, производимого в разных экспрессирующих системах, по оценкам компании "Planet Biotechnology" (Daniell et al. , 2001). Из графика видно, что уровень экспрессии значительно влияет на конечную стоимость IgA в случае продукции в культуре клеток млекопитающих и молоке трансгенных животных. В меньшей степени зави-симость цены от уровня экспрессии наблюдается при использовании трансгенных растений. Это связано с тем, что конечная цена рекомбинантного белка складывается из стоимости наработки сырого материала и стоимости его выделения. Считается, что стоимость очистки приблизительно одинакова для всех систем, а различие обу-словлено затратами при наработке сырого материала, которая в клетках млекопитающих и трансгенных живот-ных гораздо выше.
Растения-продуценты субъединичных вакцин
Похожий материал - Реферат: Вымершие животные
Трансгенные растения-продуценты эпитопов болезнетворных агентов человека и животных получили название "съедобных вакцин". Механизм иммунизации такими вакцинами основан на антигенпредставляющей способности перитонеальных макрофагов тонкого кишечника млекопитающих. В кишечнике чужеродный белок, обладающий антигенными свойствами, распознается специальными М-клетками, которые широко представлены в толще слизи-стого эпителия. М-клетки транспортируют захваченный антиген к перитонеальным макрофагам и В-лимфоцитам, находящимся в лимфоидных образованиях тонкого кишечника (пейеровых бляшках). В результате презентации антигена на поверхности антиген-представляющих клеток происходит активация T-лимфоцитов-хэлперов, которые в сочетании с антигеном активируют В-лимфоциты. Дифференцированные В-клетки выходят из лимфоидных фолликулов слизистой оболочки и посту-пают через общую циркуляцию в мезентеральные лимфатические узлы, где происходит их созревание и превра-щение в плазматические клетки, синтезирующие специфические к антигену антитела. Плазматические клетки спо-собны снова мигрировать к слизистым оболочкам дыхательных путей, желудочно-кишечного и мочеполового трак-тов. Секреторные иммуноглобулины IgA транспортируются на поверхность слизистых оболочек, где они связыва-ются с чужеродными агентами и препятствуют их проникновению в организм. Следует отметить, что мукозная вак-цинация стимулирует как иммунный ответ слизистых оболо- чек - первого защитного барьера на пути патогенных агентов, так и общий иммунный ответ организма (Walmsley, Arntzen, 2000).
Рис. Динамика цены за 1 грамм рекомбинантного IgA, полученного из разных экспрессирующих систем в зависимости от уровня экспрессии. I - культура клеток млекопитающих; II - молоко трансгенной козы; III - трансгенные растения (семена); IV - трансгенные растения (зелёная биомасса) (По: Daniell et al., 2001).
Таблица 2