Несколько сотен лет назад весь объем научных знаний был столь мал , что один человек мог подробно ознакомиться почти со всеми основными научными идеями . Накопление научной информации начиная с эпохи Возрождения происходило так быстро , что представление об ученом , как о человеке , обладающем универсальными знаниями , давно уже потеряло смысл . В настоящее время ученые делятся на физиков , химиков , биологов , геологов и т.д.
Физик старается познать самые элементарные системы в природе . Сделанные физиками открытия не только расширяют наши знания об основных физических процессах , но часто играют решающую роль в развитии других наук . Законы физики управляют всеми физическими процессами.
Поговорим о законах сохранения .Из законов сохранения наибольший интерес представляет тот , что связан с энергией . Мы слышим , что потребление энергии постоянно растет , и знаем , что недавняя нехватка энергии оказала влияние как на повседневную жизнь , так и на международные отношения . Представление об энергии связано , по-видимому , с нефтью , с углем , с падающей водой , с ураном . Энергия не только приводит в движение автомобили и обогревает дома ; она также необходима , например , для производства металлов и удобрений . Все живые существа в буквальном смысле поедают энергию , чтобы поддержать жизнь . Из рекламных проспектов мы знаем , что определенные продукты питания для завтрака могут сообщить “ заряд энергии “ , чтобы начать трудовой день .
Удивительно , что , несмотря на повсеместную большую роль энергии , это понятие оставалось неясным вплоть до середины ХIХ века . Галилей , Ньютон и Франклин не знали , несмотря на всю их искушенность , что физическая величина , которую теперь называют энергией , может быть определена так , чтобы она всегда сохранялась . Возможно , они не пришли к такой мысли потому , что это понятие вовсе не очевидно . Энергия проявляется во множестве различных форм . Движущийся автомобиль обладает энергией . Неподвижная батарейка карманного фонаря обладает энергией . Камень на вершине утеса обладает энергией . Кусочек сливочного масла обладает энергией . чайник кипятка обладает энергией . Солнечный свет обладает энергией . Энергия , проявляющаяся во всех этих различных формах , может быть определена таким способом , что при любом превращении системы полная энергия сохраняется . Однако для системы , которая никогда не претерпевает никаких изменений , разговор о содержании энергии беспредметен . Только при переходе из одной формы в другую или из одного места в другое представление об энергии становиться полезным .
Полная энергия
Потенциальная энергия . Слово “энергия” рождает в сознании образы бушующих волн , мчащихся автомобилей , прыгающих людей и интенсивной деятельности любого типа . Между тем существует и другой тип энергии . Она прячется под землей в нефтеносных пластах или таится в водохранилищах перегороженных плотинами каньонов . Аккумулятор автомобиля или неподвижная мышеловка в действительности наполнены запасенной энергией , которая готова выплеснуться наружу и воплотиться в движущиеся формы . Такие неподвижные формы энергии называют потенциальными как бы специально для того , чтобы подчеркнуть , что их потенциально можно превратить в энергию движения . В действительности любую формы энергии можно назвать потенциальной . Обычно , однако , термин потенциальная энергия относиться к энергии , запасенной в деформированном теле или в результате смещения тел в некотором электрическом , магнитном или гравитационном силовом поле . Если тела смещаются из определенных положений , а затем возвращаются обратно , система снова приобретает свою первоначальную потенциальную энергию .
Возможно вы искали - Реферат: Исследование зависимостей между механическими характеристиками материалов
Мы рассмотрим несколько различных видов потенциальной энергии . В каждом случае кинетическая работа или работа могут быть превращены в скрытую форму энергии , а затем восстановлены обратно без потерь .Более того мы определим потенциальную энергию таким образом , чтобы во всех случаях полная энергия оставалась постоянной . При совершении работы или при исчезновении кинетической энергии потенциальная энергия будет увеличиваться . В таких процессах энергия будет сохраняться , что и неудивительно , поскольку само понятие потенциальной энергии вводится именно для этой цели . В действительности , конечно , в большинстве систем рано или поздно исчезают и потенциальная , и кинетическая энергия . Тогда мы определяем новый вид энергии , связанный с внутренней структурой вещества , и снова “спасаем” закон сохранения энергии .
Возвращающие силы и потенциальная энергия . Количество энергии , запасенной в гравитационной системе , в пружине или в системе магнитов , зависит от степени деформации системы . Это искажение может заключаться в перемещении тяжелого тела на высоту h , в растяжении пружины на длину х , в сближении на расстояние х дух отталкивающихся магнитов . На графиках показана зависимость от искажения , h или х.
Потенциальная энергия системы является скалярной величиной, выражаемой в джоулях , которая сама по себе не дает никакой информации о ее будущем поведении . Взгляните на графики Wпот ( x ) для трех разных пружин и найдите на каждом точку , где Wпот = 1 Дж . Очевидно , первый график соответствует слабой пружине , которую сильно растянули. Второй относиться к сильной пружине , которую надо растянуть совсем немного для того , чтобы запасти 1 Дж . В третьем случае пружина сжата . Хотя значение потенциальной энергии одинаково во всех случаях , поведение пружин , если их освободить , будет совершенно различным . Первая пружина будет медленно тянуть обратно ( влево ) , вторая резко дернет влево , третья будет распрямляться вправо . Хотя одно только значение потенциальной энергии не позволяет предсказать такое различное поведение , это ,очевидно , можно сделать , зная форму всего графика Wпот ( x ). Именно наклон кривой Wпот ( x ) в каждой точке характеризует возвращающую силу в х – направлении , которая действует в системе в этой точке . Рассмотрим несколько примеров .
График Wпот( h ) для тела , поднятого над поверхностью Земли ( для малых высот ) , имеет постоянный наклон mgh )/Δh = mg . Тангенс угла наклона раве весу тела .Здесь , однако , имеется некоторая тонкость . Возвращающая сила тяготения направлена вниз и потому отрицательна . Тангенс угла наклона графика Wпот( h ) положителен . Если мы хотим получить возвращающую силу в системе , то следует взять отрицательный тангенс : Fвозвр= -ΔW(h)/Δh . Внешняя сила , которую следует приложить к системе для того , чтобы запасти энергию тяготения , направлена в противоположную сторону , то есть вверх , и положительна . То же самое справедливо и для энергии , запасенной в пружине . Возвращающая сила дается выражением
Fвозвр= - ΔW(x)/Δx = -Δ[ЅkxІ] /Δx = -kx.
Похожий материал - Реферат: Исследование и моделирование с помощью компьютера электрических полей
Возвращающая сила подчиняется закону Гука ; она пропорциональна смещению и направлена в сторону , противоположную смещению. Заметьте, что это определение согласуется с тем , что можно было ожидать качественно в случаях трех пружин , которые мы рассмотрели . В первом случае тангенс угла наклона мал и положителен , поэтому возвращающая сила будет малой и отрицательной – направленной в сторону меньших значений х . Во втором случае тангенс угла наклона велик и положителен - возвращающая сила будет большой и отрицательной . В третьем случае тангенс угла наклона отрицателен , поэтому возвращающая сила будет положительной , заставляя пружину расширяться .
В случае магнитов , где
Wпот.магн( x ) = C / х ,
Fмагн= - Δ(C/x)/Δx = C/xІ.
Обратите внимание , что возвращающая сила положительна , магниты отталкивают друг друга в сторону больших значений х .
Очень интересно - Реферат: Исследование магнитного гистерезиса
Снова обратите внимание на касательные , показанные на графике
Wпот.магн( x ) . При малых х наклон очень крутой и отрицательный , поэтому сила велика и положительна ( F = - ΔWпот.магн ( x ) / Δх ) . При больших х наклон незначительный и отрицательный . Следовательно , сила маленькая и положительная .
Пример, доказывающий закон сохранения энергии. Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть , например , тело массой m свободно падает на Землю с высоты h ( сопротивление воздуха отсутствует ) . В точке 1 потенциальная энергия тела относительно поверхности Земли равна Wп1=mgh , а кинетическая энергия Wк1=0 , так что в точке 1 полная механическая энергия тела W1=Wп1+Wк1=mgh .
При падении потенциальная энергия тела уменьшается , так как уменьшается высота тела над Землей , а его кинетическая энергия увеличивается , так как увеличивается скорость тела . На участке 1-2 равном h , убыль потенциальной энергии ΔWп=mgh1 , а прирост кинетической энергии ΔWк=Ѕ·mυ2І , где υ2 – скорость тела в точке 2 . Так как υ2І=2gh1 , то принимает вид ΔWк=mgh1 . Из формул следует , что прирост кинетической энергии тела равен убыли его потенциальной энергии . Следовательно , происходит переход потенциальной энергии тела в его кинетическую энергию , т.е. ΔWк = -Wп . В точке 2 потенциальная энергия падающего тела Wп2 =Wп1 – ΔWп =mgh – mgh1 , а его кинетическая энергия Wк2 =ΔWк=mgh1 .
Следовательно , полная механическая энергия тела в точке 2W2=Wк2 + Wп2 = mgh1 + mgh – mgh1 = mgh .
Вам будет интересно - Реферат: Исследование явления дисперсии электромагнитных волн в диэлектриках
В точке 3 ( на поверхности Земли ) Wп3 =0 ( т.к. h=0 ) , а Wк3 =Ѕ·mυ3І , где υ3 – скорость тела в момент падения на Землю . Так как υ3І=2gh , то Wк3 =mgh . Следовательно , в точке 3 полная энергия тела W3 =mgh , т.е. за все время падения W =Wк +Wп =const .
Эта формула выражает закон сохранения энергии в замкнутой системе , в которой действуют только консервативные силы :
Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую
энергию и обратно.
Еще один пример из жизни. Сохранение энергии – вопрос сложный и во многом не до конца разгадан , поэтому приведу следующее простенькое сравнение .
Похожий материал - Реферат: Исследования магнитных полей в веществе (№26)
Вообразите , что мать оставляет в комнате ребенка с 28 кубиками , которые нельзя сломать . Ребенок играет кубиками целый день , и мать , вернувшись , обнаруживает , что кубиков по-прежнему 28 – она следит за сохранением кубиков ! Так продолжается день за днем , но однажды , вернувшись , она находит всего 27 кубиков . Оказывается , один кубик валяется за окном –ребенок его выкинул . Рассматривая законы сохранения , прежде всего нужно убедится в том , что ваши предметы не вылетают за окно . Такая же неувязка получится , если в гости к ребенку придет другой мальчик со своими кубиками . Ясно , что все это нужно учитывать , рассуждая о законах сохранения . В один прекрасный день мать , пересчитывая , обнаруживает всего 25 кубиков и подозревает , что остальные 3 ребенок спрятал в коробку для игрушек . Тогда она говорит : “ Я открою коробку “ . “ Нет , - отвечает он , - не смей открывать мою коробку “ . Но мама очень сообразительна и рассуждает так : “ Я знаю , что пустая коробка весит 50 г , а каждый кубик весит 100 г , поэтому мне надо просто – напросто взвесить коробку “ . Затем , подсчитав число кубиков , она получит
Число видимых кубиков + ( Масса коробки – 50 г ) / 100 г
-
опять 28 . Какое-то время все идет гладко , но потом сумма опять не сходится . Тут она замечает , что в раковине изменился уровень грязной воды . Она знает , что если кубиков в воде нет , то глубина ее равна 15 см , а если положить туда один кубик , то уровень повысится на 0,5 см .
Число видимых кубиков + ( масса коробки – 50 г ) / 100 г + ( уровень воды – 15 см ) / 0,5 см