1. Введение.
2. Автоэлектронная эмиссия.
3. Тонкоплёночные автоэмиссионные катоды. Технология и особенности протекания эмиссионных процессов.
4. Технология изготовления катодов Спиндта.
5. Плотность упаковки эмиттеров.
Возможно вы искали - Реферат: по химии
6. Время жизни.
7. Заключение.
8. Список литературы.
Введение:
Стремительное развитие деловой жизни и появление новейших цифровых информационных технологий и устройств отображения информации заставляют разработчиков третьего тысячелетия совер-шенствовать способы отображения и передачи информации .
Вакуумная микроэлектроника во многом определила пути реализации самых смелых идей в использовании информационного пространства. Современного пользователя невозможно представить без компьютера и программ, на базе которых строятся современные исследования, разработки и использование мирового информационного пространства, позволяющего двигать науку .
Конечно, историю науки пишут сами люди науки. Поэтому никак не избежать субъективного подхода к изложению дате одних и тех же фактов, к подбору «значительных событий», к оценке значительности того или иного специалиста, той или иной работы для развития научного направления: ведь есть пророни своем отечестве
о которых не знают в отечествах других .
Основной доклад на первой международной конференции по вакуумной микроэлектроники сделал Айвор Броди – один из основоположников этого направления. По мнению Броди вакуумная микроэлектроника приобрела большое значение благодаря двум факторам общего характера:
Похожий материал - Реферат: на тему: Проблема загрязнения атмосферы и ее разрешение
1. Возросли требования, которым уже не могут удовлетворить твёрдотельные приборы, даже после огромных исследовательских затрат, и, кроме того,
2. Специалисты пришли к выводу, что отнюдь не будет непрактичным делать вакуумные лампы микронных и субмикронных размеров.
Как же по Айвору Броди развивалась вакуумная микроэлектроника? Он выделяет четыре основных пути её развития, которые привели к сегодняшнему состоянию.
В начале 20-х годов нашего столетия пробой заявил о себе в периодических срывах трансатлантических радиопередач, осуществляемых с помощью высоко мощных ламп Маркони. Госслинг, работавший у Маркони, исследовал этот эффект и в 1926 году опубликовал работу, в которой высказал гипотезу, что пробой вызывается электронами с выпуклостями на вольфрамовом стержневом катоде. Эти выпуклые неоднородности взрывались, вызывая пробой. Как пишет Броди, обсуждение этих результатов с профессором Фаулером из Кембриджского университета привело к Нордгейму, получившему средства на исследования, и, в конечном счете, к уравнению Фаулера – Норд гейма. Открытие того, что электроны могут вылетать с холодных катодов под действием электрических полей с высокой напряжённостью, вызвало множество проектов приборов, но прошло более сорока лет, прежде чем что-то получилось.
Настоящая работа посвящена особенностям технологии изготовления катодов Спиндта , основанная на методе создания решеток автокатодов, с использованием тонкопленочной технологии и электронно-пучковой литографии.
Очень интересно - Реферат: Средство для ванн
Решетки автоэмиссионных катодов, изготовленных из монокристаллов кремния с применением тонких металлических пленок, обладают техническими характеристиками, позволяющими их широкое применение в плоских дисплеях, сканирующих микроскопах и т.п.
Автоэлектронная эмиссия.
Автоэлектронная эмиссия (АЭ) - физическое явление, состоящее в том, что электроны покидают твёрдое тело, в котором они находятся в качестве свободных носителей заряда (это может быть металл или полупроводник), под действием сильного электрического поля, приложенного к поверхности. В случае автоэлектронной эмиссии электроны преодолевают потенциальный барьер на поверхности тела не за счет кинетической энергии теплового движения, а путем специфического квантового явления – туннельного эффекта.
В простейшем случае туннельный эффект заключается в том, что микроскопическая частица, первоначально находившаяся по одну сторону потенциального барьера (то есть области пространства, для которой полная энергия частицы e превышает её потенциальную энергию Uсх), может с конечной вероятностью быть обнаружена по другую сторону барьера.
Туннельный эффект является чисто квантовым феноменом и для него отсутствует аналог в классической механике. Согласно Ньютновской механике частица с массой m не может находиться внутри потенциального барьера, поскольку из уравнения для полной энергии следует,
Вам будет интересно - Реферат: Загрязнение территории промышленнымии
(1)
что соотношение выполняется только для мнимых значений импульса р. Объяснение туннельного эффекта, в конечном счёте, связано с соотношением неопределённости Гейзенберга, согласно которому квантовая частица находиться в состоянии с одновременно точно определёнными координатой и импульсом.
Неопределённости и всегда удовлетворяют соотношению
, (2)
где эргс – постоянная Планка.
Похожий материал - Реферат: По дисциплине: «Регионоведение» на тему: «Северный экономический район»
Согласно этому принципу, слагаемые в правой части уравнения (1) не имеют одновременно определённых значений и могут отличаться от своих средних значений. Поэтому имеется конечная вероятность обнаружить квантовую частицу в запрещённой зоне с точки зрения классической механики области.
Туннельный эффект был одним из первых квантовых явлений, предсказанных после создания в 1926 году Э. Шредингером волновой механики. По всей видимости, первое свидетельство его существования можно найти в статье Л. И. Мандельштама и М. А. Леонтовича, которые рассматривали решение уравнения Шредингера для
модельного потенциала ангармонического осциллятора вида
при и при .