Реферат: Радиолокация

1. Что такое радиолокация?

Радиолокация - область науки и техники, предмет которой - наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их координат и скорости и др.

Еще А.С. Попов заметил, что радиоволны имеют способность отражаться. На этом и основан принцип действия радиолокационной станции. Мощный луч радиолокационного передатчикам фокусируется большой антенной в направлении исследуемого объекта, фиксируется и изучается отраженный радиосигнал, на основе чего делаются выводы о тех или иных характеристиках объекта.

2. Начало радиолокации.

Первые работы по созданию радиолокационных систем начались в нашей стране в середине 30-х годов. Впервые идею радиолокации высказал научный сотрудник Ленинградского электрофизического института (ЛЭФИ) П.К. Ощепков еще в 1932 году. Позднее он же предложил идею импульсного излучения.

Возможно вы искали - Реферат: Энергетика СВЧ в народном хозяйстве: применение СВЧ-нагрева в пищевой промышленности

16 января 1934 года в Ленинградском физико - техническом институте (ЛФТИ) под председательством академика А. Ф. Иоффе состоялось совещание, на котором представители ПВО РККА поставили задачу обнаружения самолетов на высотах до 10 и дальности до 50 км в любое время суток и в любых погодных условиях. За работу взялись несколько групп изобретателей и ученых. Уже летом 1934 года группа энтузиастов, среди которых были Б. К. Шембель, В.В. Цимбалин и П. К. Ощепков, представила членам правительства опытную установку. Проект получил необходимое финансирование и в 1938 году был испытан макет импульсного радиолокатора, который имел дальность действия до 50 км при высоте цели 1,5 км. Создатели макета Ю, Б, Кобзарев, П, А, Погорелко и Н, Я, Чернецов в 1941 году за разработку радиолокационной техники были удостоены Государственной премии СССР. Дальнейшие разработки были направлены в основном на увеличение дальности действия и повышение точности определения координат. Станция РУС- 2 принятая летом 1940 года на вооружение войск ПВО не имела аналогов в мире по своим техническим характеристикам , она сослужила хорошую службу во время Великой Отечественной войны при обороне Москвы от налетов вражеской авиации. После войны перед радиолокационной техникой новые сферы применения во многих отраслях народного хозяйства. Без радаров теперь немыслимы авиация и судовождение. Радиолокационные станции исследуют планеты Солнечной системы и поверхность нашей Земли, определяют параметры орбит спутников и обнаруживают скопления грозовых облаков. За последние десятилетия радиолокационная техника неузнаваемо изменилась.

3. Основы радиолокации.

Определение координат цели радаром производится с учетом выбранной системы координат. Выбор той или иной системы координат связан со сферой применения радиолокационной установки. Например, наземная радиолокационная станция (РЛС) наблюдения за воздушной обстановкой измеряет три координаты цели: азимут, угол места и наклонную дальность.


α


Система координат обзорной РЛС :

Похожий материал - Реферат: 16-разрядный генератор псевдослучайных чисел

α - азимут; ß- угол места; R - наклонная дальность

РЛС такого типа используются на аэродромах . Работает эта станция в сферической системе координат.

Различают два основных режима работы РЛС : режим обзора (сканирования) пространства и режим слежения за целью. В режиме обзора луч РЛС по строго определенной системе просматривает все пространство или заданный сектор. Антенна , например, может медленно поворачиваться по азимуту и в то же время быстро наклоняться вверх и вниз, сканируя по углу места. В режиме слежения антенна все время направлена на выбранную цель и специальные следящие системы поворачивают ее вслед за движущейся целью.

Удаленность того или иного объекта определяется по запаздыванию отраженного сигнала относительно излучаемого. Запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью, близкой к скорости света (300 000 км/с). Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание сигнала составит всего 20 мкс. Такой результат получается из - за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Однако при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время малым назвать нельзя. Современная вычислительная техника способна с высокой точностью обрабатывать сигналы с ничтожным временем запаздывания, поэтому с помощью радаров можно регистрировать объекты, расположенные как на больших, так и на малых расстояниях от наблюдателя. Существует единственное существенное ограничение применения радаров в целях сверхдальних наблюдений - это ослабление сигнала. Если сигнал проходит большое расстояние, то он частично рассеивается, искажается и ослабевает и выделить его в приемнике из собственных шумов приемника и шумов иного происхождения зачастую крайне затруднительно. Ослабление сигнала при радиолокации вполне поддается расчету , который основан на простых физических соображениях. Если в какой - то точке излучается мощность Р , то поток мощности через единичную площадку, находящуюся на расстоянии R , будет пропорционален Р/4pR^2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая антенной, обратно пропорциональна квадрату расстояния. Этот закон - закон сферической расходимости пучка энергии - выполняется всегда при распространении волн в свободном пространстве. Даже если сконцентрировать излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз ( этот коэффициент называется коэффициентом направленного действия антенны, КНД ), квадратичная зависимость от расстояния сохранится. Но в радиолокации радиосигнал преодолевает двойные расстояния, а сама облучаемая цель рассеивает энергию по

всем направлениям , и если облучающий цель поток энергии ослабевает обратно пропорционально R^2 то приходящий к приемнику рассеяный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R^4. Это означает, что для повышения дальности действия РЛС в два раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Столь высокой ценой достигаются высокие характеристики современных РЛС.

Очень интересно - Реферат: Оптико-электронные системы

4. Радиолокационная техника.

Рассмотрим структурные схемы простейших радиолокаторов. Доплеровская РЛС непрерывного излучения - самая простая из всех. Именно по такому принципу были построены первые «радиоуловители» самолетов. Она содержит генератор высокочастотных колебаний ( ГВЧ), передающую Апер и приемную Апр антенны, смеситель и усилитель низкой частоты биений (УНЧ) . На его выходе включаются либо наушники, либо частотомер.

Апер

V мМММ

ГВЧ

Вам будет интересно - Реферат: Ремонт и регулировка мониторов для компьютеров

Апр


Доплеровская РЛС не обнаруживает неподвижные предметы. Сигнал, отраженный от них имеет ту же самую частоту, что и излучаемый. Но если обнаруживаемый объект движется в направлении локатора или от него, частота отраженного сигнала изменяется вследствие эффекта Доплера (эффект Доплера - изменение длины волны l (или частоты), наблюдаемое при движении источника волн относительно их приемника. Характерен для любых волн (свет, звук и т. д.). При приближении источника к приемнику l уменьшается, а при удалении растет на величину l - l о = vl о/c , где l о - длина волны источника, c - скорость распространения волны, v - относительная скорость движения источника.)

При радиолокации эффект Доплера проявляется вдвое сильнее. Самолет, летящий навстречу излучаемой локатором волне, встречает более частые колебания электромагнитного поля. Переизлучая их во время движения, он еще повышает их частоту. При удалении же самолета от локатора частота отраженного сигнала понижается. В приемную антенну попадают два сигнала: прямого прохождения (от излучающей антенны) и отраженный от цели. В смесителе они взаимодействуют, образуя разностную частоту биений, в точности равную доплеровской Fд=2foV/C

где fo - частота излучаемого сигнала; С - радиальная скорость цели; V - скорость радиоволн, равная скорости света.

Определить дальность доплеровским локатором нельзя, но если частоту излучаемых колебаний изменять в некоторых пределах, т.е. ввести в генератор частотную модуляцию, то появляется возможность измерить дальность. Первую опытную установку, действующую по такому принципу, построил известный ученый Б. К. Шембель и использовал ее при локации Крымских гор. Пусть частота передатчика изменяется по пилообразному закону. Частота отраженного сигнала будет изменяться также, но с запаздыванием на некоторое время t , время распространения волн до цели и обратно. Если частота передатчика в какой - то момент t 1 равна f 1 , то отраженный сигнал возвращается с этой же частотой. Но частота передатчика к времени t1 + t успеет измениться до значения

Похожий материал - Реферат: Однозеркальная антенна

f 1 + D f, и в приемнике выделится сигнал биений с частотой Df.

Излучаемый сигнал

t1 + t